Santa Teresa Formation, Colombia

The Santa Teresa Formation (Spanish: Formación Santa Teresa, Tist, Pgst) is a geological formation of the western Eastern Ranges of the Colombian Andes, west of the Bituima Fault, and the southern Middle Magdalena Valley. The formation spreads across the western part of Cundinamarca and the northern portion of Tolima. The formation consists of grey claystones intercalated by orange quartz siltstones and sandstones of small to conglomeratic grain size. The thickness at its type section has been measured to be 118 metres (387 ft) and a maximum thickness of 150 metres (490 ft) suggested.

Santa Teresa Formation
Stratigraphic range: Late Oligocene (Deseadan)
~25–23 Ma
TypeGeological formation
Underliesalluvium
OverliesSan Juan de Río Seco Formation
ThicknessType section: 118 m (387 ft)
Maximum: 150 m (490 ft)
Lithology
PrimaryClaystone
OtherSiltstone, calcareous sandstone
Location
Coordinates4°50′55″N 74°37′14″W / 4.84861°N 74.62056°W / 4.84861; -74.62056
Country Colombia
ExtentWestern Eastern Ranges, Andes
Southern Middle Magdalena Valley
Type section
Named forVereda Santa Teresa
Named byDe Porta
LocationSan Juan de Rioseco
Year defined1966
Coordinates4°50′55″N 74°37′14″W / 4.84861°N 74.62056°W / 4.84861; -74.62056
RegionCundinamarca
Country Colombia
Thickness at type section118 m (387 ft)

Paleogeography of Northern South America
35 Ma, by Ron Blakey

In the formation, dated on the basis of its fossil content to the Late Oligocene, many leaf imprints and mollusks were found, suggesting a lacustrine to deltaic depositional environment with periodical marine incursions.

Etymology

edit

The formation was defined by De Porta in 1966 and named after the vereda Santa Teresa, San Juan de Rioseco.[1]

Description

edit
 
 
Type locality of the Santa Teresa Formation in Cundinamarca

The Santa Teresa Formation is the youngest unit outcropping in the Jerusalén-Guaduas synclinal, western Eastern Ranges, covering the San Juan de Río Seco Formation. The formation was formerly called La Cira Formation. In the Balú quebrada, the formation shows a thickness of 118 metres (387 ft), while the maximum thickness could reach 150 metres (490 ft).[1]

The lower boundary of the formation is marked by the first occurrence of grey claystones, covering the light brown claystones of the San Juan de Río Seco Formation. The formation comprises grey claystones intercalated by orange quartz siltstones and sandstones of small to conglomeratic grain size. The roundness of the sandstone grains has been characterized as angular to subangular by Lamus Ochoa et al. in 2013.[2] The claystones occur in thick layers with wavy lamination.[1]

In these thick packages of claystones, the formation has provided fossil leaves in various forms and sizes, and to a lesser extent the remains of mollusks; gastropods and bivalves. The basal contacts of these beds are straight to transitional and most of the time are coarsening upward towards quartz arenites where the gastropods dominate. These facies sequences have a thickness of about 2 metres (6.6 ft). Locally, bioturbation, siderite nodules and coal beds occur in the formation. The sandstones occur in very thin to very thick beds, characterized by plain parallel lamination, in lenses and very locally in flasers. The cement of the arenites is calcareous.[1] The grain composition of the lithic fraction comprises zircon,[3] epidote, zoisite, clinozoisite and pyroxenes, which at the top of the formation amounts to 86 percent.[4]

Stratigraphy and depositional environment

edit

The Santa Teresa Formation conformably overlies the San Juan de Río Seco Formation and is covered by subrecent alluvium.[1] The formation is part of the sequence after the Eocene unconformity.[5]

The age has been inferred to be Late Oligocene. The depositional environment has been interpreted as lacustrine with marine influence in the form of channels. The abundance of brackish and fresh water gastropods suggests these environmental conditions prevailed in the Oligocene of central Colombia.[1]

In the type section at the Balú quebrada, facies traits that confirm this interpretation can be observed. The lacustrine areas were probably shallow water environments with reducing conditions and a continuous supply of siliciclastics by small deltas. The many leaf imprints and coal layers support the presence of a lush vegetation at the time of deposition.[1] The abundance of lithic clasts near the top of the formation supports a renewed provenance area to the east; the uplift of the Eastern Ranges of the Colombian Andes,[6] due to activity of the La Salina Fault.[7]

Paleontology

edit

The Santa Teresa Formation has provided fossil mollusks, described by De Porta and Solé De Porta in 1962 and De Porta Anodontites laciranus, Diplodon oponcintonis, Diplodon waringi,[8] and Corbula sp., among other mollusks described by De Porta in 1966.[1]

Regional correlations

edit
Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
 
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
 
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[9][10][11][12]
2.6 Pliocene
 
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [11][13]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [12][14]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [13][12]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
 
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [10][13]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [10][13][15]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[15]
35 Late Eocene
 
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [12][16]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
 
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[12][16]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [9][10][13][12][17]
65 Maastrichtian
 
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [9][12]
72 Campanian End of rifting Colón-Mito Juan [12][18]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [9][12][19]
93 Cenomanian
 
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [13][19]
113 Aptian
 
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [10][12][20]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [9]
129 Hauterivian
 
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [9]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [10][21]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [13][22]
150 Early-Mid Jurassic
 
Passive margin 2 La Quinta
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[23]
201 Late Triassic
 
Mucuchachi Payandé [13]
235 Early Triassic
 
Pangea hiatus "Paleozoic"
250 Permian
 
300 Late Carboniferous
 
Famatinian orogeny Cerro Neiva
()
[24]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
 
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[21][25][26][27][28]
390 Early Devonian
 
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
 
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Guape
()
Río Nevado
()
[29][30][31]
488 Late Cambrian
 
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[32][33]
515 Early Cambrian Cambrian explosion [31][34]
542 Ediacaran
 
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [35][36]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [32]
800
 
Snowball Earth [37]
1000 Mesoproterozoic
 
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[38][39][40][41]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[42]
1400
 
pre-Bucaramanga [43]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [44]
1800
 
Tapajós orogeny Mitú
(1800)
[42][44]
1950 Transamazonic orogeny pre-Mitú [42]
2200 Columbia
2530 Archean
 
Carajas-Imataca orogeny [42]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


See also

edit

Notes and references

edit

Notes

edit
  1. ^ based on Duarte et al. (2019)[45], García González et al. (2009),[46] and geological report of Villavicencio[47]
  2. ^ based on Duarte et al. (2019)[45] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[48]

References

edit
  1. ^ a b c d e f g h Acosta & Ulloa, 2001, p.64
  2. ^ Lamus Ochoa et al., 2013, p.29
  3. ^ Lamus Ochoa et al., 2013, p.34
  4. ^ Lamus Ochoa et al., 2013, p.32
  5. ^ Lamus Ochoa et al., 2013, p.22
  6. ^ Lamus Ochoa et al., 2013, p.35
  7. ^ Caballero et al., 2010, p.74
  8. ^ Acosta Garay et al., 2002, p.49
  9. ^ a b c d e f García González et al., 2009, p.27
  10. ^ a b c d e f García González et al., 2009, p.50
  11. ^ a b García González et al., 2009, p.85
  12. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  13. ^ a b c d e f g h Barrero et al., 2007, p.58
  14. ^ Plancha 111, 2001, p.29
  15. ^ a b Plancha 177, 2015, p.39
  16. ^ a b Plancha 111, 2001, p.26
  17. ^ Plancha 111, 2001, p.24
  18. ^ Plancha 111, 2001, p.23
  19. ^ a b Pulido & Gómez, 2001, p.32
  20. ^ Pulido & Gómez, 2001, p.30
  21. ^ a b Pulido & Gómez, 2001, pp.21-26
  22. ^ Pulido & Gómez, 2001, p.28
  23. ^ Correa Martínez et al., 2019, p.49
  24. ^ Plancha 303, 2002, p.27
  25. ^ Terraza et al., 2008, p.22
  26. ^ Plancha 229, 2015, pp.46-55
  27. ^ Plancha 303, 2002, p.26
  28. ^ Moreno Sánchez et al., 2009, p.53
  29. ^ Mantilla Figueroa et al., 2015, p.43
  30. ^ Manosalva Sánchez et al., 2017, p.84
  31. ^ a b Plancha 303, 2002, p.24
  32. ^ a b Mantilla Figueroa et al., 2015, p.42
  33. ^ Arango Mejía et al., 2012, p.25
  34. ^ Plancha 350, 2011, p.49
  35. ^ Pulido & Gómez, 2001, pp.17-21
  36. ^ Plancha 111, 2001, p.13
  37. ^ Plancha 303, 2002, p.23
  38. ^ Plancha 348, 2015, p.38
  39. ^ Planchas 367-414, 2003, p.35
  40. ^ Toro Toro et al., 2014, p.22
  41. ^ Plancha 303, 2002, p.21
  42. ^ a b c d Bonilla et al., 2016, p.19
  43. ^ Gómez Tapias et al., 2015, p.209
  44. ^ a b Bonilla et al., 2016, p.22
  45. ^ a b Duarte et al., 2019
  46. ^ García González et al., 2009
  47. ^ Pulido & Gómez, 2001
  48. ^ García González et al., 2009, p.60

Bibliography

edit

See also sources for the correlation table

  • Acosta Garay, Jorge; Ulloa Melo, Carlos E. (2001), Geología de la Plancha 227 La Mesa - 1:100,000, INGEOMINAS, pp. 1–80
  • Acosta Garay, Jorge Enrique; Guatame, Rafael; Caicedo A., Juan Carlos; Cárdenas, Jorge Ignacio (2002), Geología de la Plancha 245 Girardot - 1:100,000, INGEOMINAS, pp. 1–101
  • Caballero, Víctor; Parra, Mauricio; Mora Bohórquez, Andrés Roberto (2010), Levantamiento de la Cordillera Oriental de Colombia durante el Eoceno tardío – Oligoceno temprano: Proveniencia sedimentaria en el Sinclinal de Nuevo Mundo, Cuenca Valle Medio del Magdalena, vol. 32, Boletín de Geología, pp. 45–77
  • Lamus Ochoa, Felipe; Bayona, Germán; Cardona, Agustín; Mora, Andrés (2013), Procedencia de las unidades cenozoicas del Sinclinal de Guaduas: implicación en la evolución tectónica del sur del Valle Medio del Magdalena y orógenos adyacentes, vol. 35, Boletín de Geología, pp. 1–42

Maps

edit