Solar eclipse of February 14, 1953

A partial solar eclipse occurred at the Moon's ascending node of orbit between Friday, February 13 and Saturday, February 14, 1953,[1] with a magnitude of 0.7596. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of February 14, 1953
Map
Type of eclipse
NaturePartial
Gamma1.1331
Magnitude0.7596
Maximum eclipse
Coordinates61°54′N 104°54′E / 61.9°N 104.9°E / 61.9; 104.9
Times (UTC)
Greatest eclipse0:59:30
References
Saros149 (17 of 71)
Catalog # (SE5000)9404

A partial eclipse was visible for parts of East Asia, Northeast Asia, and Alaska.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

February 14, 1953 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1953 February 13 at 23:12:27.3 UTC
Greatest Eclipse 1953 February 14 at 00:59:29.8 UTC
Ecliptic Conjunction 1953 February 14 at 01:10:45.7 UTC
Equatorial Conjunction 1953 February 14 at 01:54:08.7 UTC
Last Penumbral External Contact 1953 February 14 at 02:46:08.9 UTC
February 14, 1953 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.75964
Eclipse Obscuration 0.70380
Gamma 1.13308
Sun Right Ascension 21h49m19.4s
Sun Declination -13°10'35.4"
Sun Semi-Diameter 16'11.6"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 21h47m19.1s
Moon Declination -12°07'43.4"
Moon Semi-Diameter 16'43.4"
Moon Equatorial Horizontal Parallax 1°01'22.7"
ΔT 30.4 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of January–February 1953
January 29
Descending node (full moon)
February 14
Ascending node (new moon)
   
Total lunar eclipse
Lunar Saros 123
Partial solar eclipse
Solar Saros 149
edit

Eclipses in 1953

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 149

edit

Inex

edit

Triad

edit

Solar eclipses of 1950–1953

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipse on July 11, 1953 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1950 to 1953
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 March 18, 1950
 
Annular (non-central)
0.9988 124 September 12, 1950
 
Total
0.8903
129 March 7, 1951
 
Annular
−0.242 134 September 1, 1951
 
Annular
0.1557
139 February 25, 1952
 
Total
0.4697 144 August 20, 1952
 
Annular
−0.6102
149 February 14, 1953
 
Partial
1.1331 154 August 9, 1953
 
Partial
−1.344

Saros 149

edit

This eclipse is a part of Saros series 149, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 21, 1664. It contains total eclipses from April 9, 2043 through October 2, 2331; hybrid eclipses from October 13, 2349 through November 3, 2385; and annular eclipses from November 15, 2403 through July 13, 2800. The series ends at member 71 as a partial eclipse on September 28, 2926. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 31 at 4 minutes, 10 seconds on July 17, 2205, and the longest duration of annularity will be produced by member 62 at 5 minutes, 6 seconds on June 21, 2764. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]

Series members 9–30 occur between 1801 and 2200:
9 10 11
 
November 18, 1808
 
November 29, 1826
 
December 9, 1844
12 13 14
 
December 21, 1862
 
December 31, 1880
 
January 11, 1899
15 16 17
 
January 23, 1917
 
February 3, 1935
 
February 14, 1953
18 19 20
 
February 25, 1971
 
March 7, 1989
 
March 19, 2007
21 22 23
 
March 29, 2025
 
April 9, 2043
 
April 20, 2061
24 25 26
 
May 1, 2079
 
May 11, 2097
 
May 24, 2115
27 28 29
 
June 3, 2133
 
June 14, 2151
 
June 25, 2169
30
 
July 6, 2187

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 2, 1880 and July 9, 1964
December 2–3 September 20–21 July 9–10 April 26–28 February 13–14
111 113 115 117 119
 
December 2, 1880
 
July 9, 1888
 
April 26, 1892
 
February 13, 1896
121 123 125 127 129
 
December 3, 1899
 
September 21, 1903
 
July 10, 1907
 
April 28, 1911
 
February 14, 1915
131 133 135 137 139
 
December 3, 1918
 
September 21, 1922
 
July 9, 1926
 
April 28, 1930
 
February 14, 1934
141 143 145 147 149
 
December 2, 1937
 
September 21, 1941
 
July 9, 1945
 
April 28, 1949
 
February 14, 1953
151 153 155
 
December 2, 1956
 
September 20, 1960
 
July 9, 1964

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipse on November 4, 2116 (part of Saros 164) is also a part of this series but is not included in the table below.

Series members between 1801 and 2029
 
March 24, 1811
(Saros 136)
 
February 21, 1822
(Saros 137)
 
January 20, 1833
(Saros 138)
 
December 21, 1843
(Saros 139)
 
November 20, 1854
(Saros 140)
 
October 19, 1865
(Saros 141)
 
September 17, 1876
(Saros 142)
 
August 19, 1887
(Saros 143)
 
July 18, 1898
(Saros 144)
 
June 17, 1909
(Saros 145)
 
May 18, 1920
(Saros 146)
 
April 18, 1931
(Saros 147)
 
March 16, 1942
(Saros 148)
 
February 14, 1953
(Saros 149)
 
January 14, 1964
(Saros 150)
 
December 13, 1974
(Saros 151)
 
November 12, 1985
(Saros 152)
 
October 12, 1996
(Saros 153)
 
September 11, 2007
(Saros 154)
 
August 11, 2018
(Saros 155)
 
July 11, 2029
(Saros 156)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
May 25, 1808
(Saros 144)
 
May 4, 1837
(Saros 145)
 
April 15, 1866
(Saros 146)
 
March 26, 1895
(Saros 147)
 
March 5, 1924
(Saros 148)
 
February 14, 1953
(Saros 149)
 
January 24, 1982
(Saros 150)
 
January 4, 2011
(Saros 151)
 
December 15, 2039
(Saros 152)
 
November 24, 2068
(Saros 153)
 
November 4, 2097
(Saros 154)
 
October 16, 2126
(Saros 155)
 
September 26, 2155
(Saros 156)
 
September 4, 2184
(Saros 157)

References

edit
  1. ^ "February 13–14, 1953 Partial Solar Eclipse". timeanddate. Retrieved 5 August 2024.
  2. ^ "Partial Solar Eclipse of 1953 Feb 14". EclipseWise.com. Retrieved 5 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 149". eclipse.gsfc.nasa.gov.
edit