Solar eclipse of August 9, 1953

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953,[1] with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of August 9, 1953
Map
Type of eclipse
NaturePartial
Gamma−1.344
Magnitude0.3729
Maximum eclipse
Coordinates62°12′S 114°42′W / 62.2°S 114.7°W / -62.2; -114.7
Times (UTC)
Greatest eclipse15:55:03
References
Saros154 (3 of 71)
Catalog # (SE5000)9405

A partial eclipse was visible for parts of Antarctica and extreme southern South America.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

August 9, 1953 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1953 August 09 at 14:22:15.1 UTC
Greatest Eclipse 1953 August 09 at 15:55:02.5 UTC
Ecliptic Conjunction 1953 August 09 at 16:10:26.5 UTC
Equatorial Conjunction 1953 August 09 at 17:02:08.4 UTC
Last Penumbral External Contact 1953 August 09 at 17:27:26.5 UTC
August 9, 1953 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.37289
Eclipse Obscuration 0.25324
Gamma −1.34403
Sun Right Ascension 09h16m48.0s
Sun Declination +15°49'20.1"
Sun Semi-Diameter 15'46.7"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 09h14m48.9s
Moon Declination +14°41'52.0"
Moon Semi-Diameter 14'54.3"
Moon Equatorial Horizontal Parallax 0°54'42.1"
ΔT 30.6 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of July–August 1953
July 11
Descending node (new moon)
July 26
Ascending node (full moon)
August 9
Descending node (new moon)
     
Partial solar eclipse
Solar Saros 116
Total lunar eclipse
Lunar Saros 128
Partial solar eclipse
Solar Saros 154
edit

Eclipses in 1953

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 154

edit

Inex

edit

Triad

edit

Solar eclipses of 1950–1953

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipse on July 11, 1953 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1950 to 1953
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 March 18, 1950
 
Annular (non-central)
0.9988 124 September 12, 1950
 
Total
0.8903
129 March 7, 1951
 
Annular
−0.242 134 September 1, 1951
 
Annular
0.1557
139 February 25, 1952
 
Total
0.4697 144 August 20, 1952
 
Annular
−0.6102
149 February 14, 1953
 
Partial
1.1331 154 August 9, 1953
 
Partial
−1.344

Saros 154

edit

This eclipse is a part of Saros series 154, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 19, 1917. It contains annular eclipses from October 3, 2043 through March 27, 2332; hybrid eclipses from April 7, 2350 through April 29, 2386; and total eclipses from May 9, 2404 through May 29, 3035. The series ends at member 71 as a partial eclipse on August 25, 3179. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 9 at 3 minutes, 41 seconds on October 13, 2061, and the longest duration of totality will be produced by member 35 at 4 minutes, 50 seconds on July 25, 2530. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 1–16 occur between 1917 and 2200:
1 2 3
 
July 19, 1917
 
July 30, 1935
 
August 9, 1953
4 5 6
 
August 20, 1971
 
August 31, 1989
 
September 11, 2007
7 8 9
 
September 21, 2025
 
October 3, 2043
 
October 13, 2061
10 11 12
 
October 24, 2079
 
November 4, 2097
 
November 16, 2115
13 14 15
 
November 26, 2133
 
December 8, 2151
 
December 18, 2169
16
 
December 29, 2187

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 16, 1866 and August 9, 1953
March 16–17 January 1–3 October 20–22 August 9–10 May 27–29
108 110 112 114 116
 
March 16, 1866
 
August 9, 1877
 
May 27, 1881
118 120 122 124 126
 
March 16, 1885
 
January 1, 1889
 
October 20, 1892
 
August 9, 1896
 
May 28, 1900
128 130 132 134 136
 
March 17, 1904
 
January 3, 1908
 
October 22, 1911
 
August 10, 1915
 
May 29, 1919
138 140 142 144 146
 
March 17, 1923
 
January 3, 1927
 
October 21, 1930
 
August 10, 1934
 
May 29, 1938
148 150 152 154
 
March 16, 1942
 
January 3, 1946
 
October 21, 1949
 
August 9, 1953

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1964
 
September 17, 1811
(Saros 141)
 
August 16, 1822
(Saros 142)
 
July 17, 1833
(Saros 143)
 
June 16, 1844
(Saros 144)
 
May 16, 1855
(Saros 145)
 
April 15, 1866
(Saros 146)
 
March 15, 1877
(Saros 147)
 
February 11, 1888
(Saros 148)
 
January 11, 1899
(Saros 149)
 
December 12, 1909
(Saros 150)
 
November 10, 1920
(Saros 151)
 
October 11, 1931
(Saros 152)
 
September 10, 1942
(Saros 153)
 
August 9, 1953
(Saros 154)
 
July 9, 1964
(Saros 155)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2069
 
November 18, 1808
(Saros 149)
 
October 29, 1837
(Saros 150)
 
October 8, 1866
(Saros 151)
 
September 18, 1895
(Saros 152)
 
August 30, 1924
(Saros 153)
 
August 9, 1953
(Saros 154)
 
July 20, 1982
(Saros 155)
 
July 1, 2011
(Saros 156)
 
May 20, 2069
(Saros 158)

References

edit
  1. ^ "August 9, 1953 Partial Solar Eclipse". timeanddate. Retrieved 5 August 2024.
  2. ^ "Partial Solar Eclipse of 1953 Aug 09". EclipseWise.com. Retrieved 5 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 154". eclipse.gsfc.nasa.gov.
edit