In number theory, Bertrand's postulate is the theorem that for any integer , there exists at least one prime number with

Joseph Louis François Bertrand

A less restrictive formulation is: for every , there is always at least one prime such that

Another formulation, where is the -th prime, is: for

[1]

This statement was first conjectured in 1845 by Joseph Bertrand[2] (1822–1900). Bertrand himself verified his statement for all integers .

His conjecture was completely proved by Chebyshev (1821–1894) in 1852[3] and so the postulate is also called the Bertrand–Chebyshev theorem or Chebyshev's theorem. Chebyshev's theorem can also be stated as a relationship with , the prime-counting function (number of primes less than or equal to ):

Prime number theorem

edit

The prime number theorem (PNT) implies that the number of primes up to x, π(x), is roughly x/log(x), so if we replace x with 2x then we see the number of primes up to 2x is asymptotically twice the number of primes up to x (the terms log(2x) and log(x) are asymptotically equivalent). Therefore, the number of primes between n and 2n is roughly n/log(n) when n is large, and so in particular there are many more primes in this interval than are guaranteed by Bertrand's postulate. So Bertrand's postulate is comparatively weaker than the PNT. But PNT is a deep theorem, while Bertrand's Postulate can be stated more memorably and proved more easily, and also makes precise claims about what happens for small values of n. (In addition, Chebyshev's theorem was proved before the PNT and so has historical interest.)

The similar and still unsolved Legendre's conjecture asks whether for every n ≥ 1, there is a prime p such that n2 < p < (n + 1)2. Again we expect that there will be not just one but many primes between n2 and (n + 1)2, but in this case the PNT does not help: the number of primes up to x2 is asymptotic to x2/log(x2) while the number of primes up to (x + 1)2 is asymptotic to (x + 1)2/log((x + 1)2), which is asymptotic to the estimate on primes up to x2. So, unlike the previous case of x and 2x, we do not get a proof of Legendre's conjecture for large n. Error estimates on the PNT are not (indeed, cannot be) sufficient to prove the existence of even one prime in this interval. In greater detail, the PNT allows to estimate the boundaries for all ε > 0, there exists an S such that for x > S:

 
 

The ratio between the lower bound π((x+1)2) and the upper bound of π(x2) is

 

Note that since   when  ,   for all x > 0, and   for a fixed ε, there exists an R such that the ratio above is less that 1 for all x > R. Thus, it does not ensure that there exists a prime between π(x2) and π((x+1)2). More generally, these simple bounds are not enough to prove that there exists a prime between π(xn) and π((x+1)n) for any positive integer n > 1.

Generalizations

edit

In 1919, Ramanujan (1887–1920) used properties of the Gamma function to give a simpler proof than Chebyshev's.[4] His short paper included a generalization of the postulate, from which would later arise the concept of Ramanujan primes. Further generalizations of Ramanujan primes have also been discovered; for instance, there is a proof that

 

with pk the kth prime and Rn the nth Ramanujan prime.

Other generalizations of Bertrand's postulate have been obtained using elementary methods. (In the following, n runs through the set of positive integers.) In 1973, Denis Hanson proved that there exists a prime between 3n and 4n.[5] In 2006, apparently unaware of Hanson's result, M. El Bachraoui proposed a proof that there exists a prime between 2n and 3n.[6] El Bachraoui's proof is an extension of Erdős's arguments for the primes between n and 2n. Shevelev, Greathouse, and Moses (2013) discuss related results for similar intervals.[7]

Bertrand’s postulate over the Gaussian integers is an extension of the idea of the distribution of primes, but in this case on the complex plane. Thus, as Gaussian primes extend over the plane and not only along a line, and doubling a complex number is not simply multiplying by 2 but doubling its norm (multiplying by 1+i), different definitions lead to different results, some are still conjectures, some proven.[8]

Sylvester's theorem

edit

Bertrand's postulate was proposed for applications to permutation groups. Sylvester (1814–1897) generalized the weaker statement with the statement: the product of k consecutive integers greater than k is divisible by a prime greater than k. Bertrand's (weaker) postulate follows from this by taking k = n, and considering the k numbers n + 1, n + 2, up to and including n + k = 2n, where n > 1. According to Sylvester's generalization, one of these numbers has a prime factor greater than k. Since all these numbers are less than 2(k + 1), the number with a prime factor greater than k has only one prime factor, and thus is a prime. Note that 2n is not prime, and thus indeed we now know there exists a prime p with n < p < 2n.

Erdős's theorems

edit

In 1932, Erdős (1913–1996) also published a simpler proof using binomial coefficients and the Chebyshev function  , defined as:

 

where px runs over primes. See proof of Bertrand's postulate for the details.[9]

Erdős proved in 1934 that for any positive integer k, there is a natural number N such that for all n > N, there are at least k primes between n and 2n. An equivalent statement had been proved in 1919 by Ramanujan (see Ramanujan prime).

Better results

edit

It follows from the prime number theorem that for any real   there is a   such that for all   there is a prime   such that  . It can be shown, for instance, that

 

which implies that   goes to infinity (and, in particular, is greater than 1 for sufficiently large  ).[10]

Non-asymptotic bounds have also been proved. In 1952, Jitsuro Nagura proved that for   there is always a prime between   and  .[11]

In 1976, Lowell Schoenfeld showed that for  , there is always a prime   in the open interval  .[12]

In his 1998 doctoral thesis, Pierre Dusart improved the above result, showing that for  ,  , and in particular for  , there exists a prime   in the interval  .[13]

In 2010 Pierre Dusart proved that for   there is at least one prime   in the interval  .[14]

In 2016, Pierre Dusart improved his result from 2010, showing (Proposition 5.4) that if  , there is at least one prime   in the interval  .[15] He also shows (Corollary 5.5) that for  , there is at least one prime   in the interval  .

Baker, Harman and Pintz proved that there is a prime in the interval   for all sufficiently large  .[16]

Dudek proved that for all  , there is at least one prime between   and  .[17]

Dudek also proved that the Riemann hypothesis implies that for all   there is a prime   satisfying

 [18]

Consequences

edit

See also

edit

Notes

edit
  1. ^ Ribenboim, Paulo (2004). The Little Book of Bigger Primes. New York: Springer-Verlag. p. 181. ISBN 978-0-387-20169-6.
  2. ^ Bertrand, Joseph (1845), "Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme.", Journal de l'École Royale Polytechnique (in French), 18 (Cahier 30): 123–140.
  3. ^ Tchebychev, P. (1852), "Mémoire sur les nombres premiers." (PDF), Journal de mathématiques pures et appliquées, Série 1 (in French): 366–390. (Proof of the postulate: 371-382). Also see Tchebychev, P. (1854), "Mémoire sur les nombres premiers.", Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg (in French), 7: 15–33
  4. ^ Ramanujan, S. (1919), "A proof of Bertrand's postulate", Journal of the Indian Mathematical Society, 11: 181–182
  5. ^ Hanson, Denis (1973), "On a theorem of Sylvester and Schur", Canadian Mathematical Bulletin, 16 (2): 195–199, doi:10.4153/CMB-1973-035-3.
  6. ^ El Bachraoui, Mohamed (2006), "Primes in the interval [2n,3n]", International Journal of Contemporary Mathematical Sciences, 1
  7. ^ Shevelev, Vladimir; Greathouse, Charles R.; Moses, Peter J. C. (2013), "On Intervals (kn,(k + 1)n) Containing a Prime for All n > 1" (PDF), Journal of Integer Sequences, 16 (7), ISSN 1530-7638
  8. ^ Madhuparna Das (2019), Generalization of Bertrand’s postulate for Gaussian primes, arXiv:1901.07086v2
  9. ^ Erdős, P. (1932), "Beweis eines Satzes von Tschebyschef" (PDF), Acta Litt. Sci. (Szeged) (in German), 5 (1930-1932): 194–198
  10. ^ G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford University Press, 2008, p. 494.
  11. ^ Nagura, J (1952), "On the interval containing at least one prime number", Proceedings of the Japan Academy, Series A, 28 (4): 177–181, doi:10.3792/pja/1195570997
  12. ^ Lowell Schoenfeld (April 1976), "Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x), II", Mathematics of Computation, 30 (134): 337–360, doi:10.2307/2005976, JSTOR 2005976
  13. ^ Dusart, Pierre (1998), Autour de la fonction qui compte le nombre de nombres premiers (PDF) (PhD thesis) (in French)
  14. ^ Dusart, Pierre (2010). "Estimates of Some Functions Over Primes without R.H.". arXiv:1002.0442 [math.NT].
  15. ^ Dusart, Pierre (2016), "Explicit estimates of some functions over primes", The Ramanujan Journal, 45: 227–251, doi:10.1007/s11139-016-9839-4, S2CID 125120533
  16. ^ Baker, R. C.; Harman, G.; Pintz, J. (2001), "The difference between consecutive primes, II", Proceedings of the London Mathematical Society, 83 (3): 532–562, CiteSeerX 10.1.1.360.3671, doi:10.1112/plms/83.3.532, S2CID 8964027
  17. ^ Dudek, Adrian (December 2016), "An explicit result for primes between cubes", Funct. Approx., 55 (2): 177–197, arXiv:1401.4233, doi:10.7169/facm/2016.55.2.3, S2CID 119143089
  18. ^ Dudek, Adrian W. (21 August 2014), "On the Riemann hypothesis and the difference between primes", International Journal of Number Theory, 11 (3): 771–778, arXiv:1402.6417, Bibcode:2014arXiv1402.6417D, doi:10.1142/S1793042115500426, ISSN 1793-0421, S2CID 119321107
  19. ^ Ronald L., Graham; Donald E., Knuth; Oren, Patashnik (1994). Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley. ISBN 978-0-201-55802-9.

Bibliography

edit
edit