341 (three hundred [and] forty-one) is the natural number following 340 and preceding 342.
| ||||
---|---|---|---|---|
Cardinal | three hundred forty one | |||
Ordinal | 341st (three hundred forty-first) | |||
Factorization | 111 × 311 | |||
Divisors | 1, 11, 31, 341 | |||
Greek numeral | ΤΜΑ´ | |||
Roman numeral | CCCXLI | |||
Binary | 1010101012 | |||
Ternary | 1101223 | |||
Senary | 13256 | |||
Octal | 5258 | |||
Duodecimal | 24512 | |||
Hexadecimal | 15516 |
In mathematics
edit- 341 is the sum of seven consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61).
- 341 is an octagonal number and a centered cube number.
- 341 is a super-Poulet number.[1]
- 341 is the smallest Fermat pseudoprime; it is the least composite odd modulus m greater than the base b, that satisfies the Fermat property "bm−1 − 1 is divisible by m", for bases up to 128 of b = 2, 15, 60, 63, 78, and 108.[2]
- 341 is a palindrome in base 2 (1010101012), 4 (111114), 8 (5258), 17 (13117) and 30 (BB30).
- 341 is repdigit in base 4 (111114) and 30 (BB30).
References
edit- ^ Sloane, N. J. A. (ed.). "Sequence A050217 (Super-Poulet numbers: Poulet numbers whose divisors d all satisfy d|2^d-2.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001567 (Fermat pseudoprimes to base 2, also called Sarrus numbers or Poulet numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.