In mathematics, an octagonal number is a figurate number that gives the number of points in a certain octagonal arrangement. The octagonal number for n is given by the formula 3n2 − 2n, with n > 0. The first few octagonal numbers are

1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936 (sequence A000567 in the OEIS)

The octagonal number for n can also be calculated by adding the square of n to twice the (n − 1)th pronic number.

Octagonal numbers consistently alternate parity.

Octagonal numbers are occasionally referred to as "star numbers," though that term is more commonly used to refer to centered dodecagonal numbers.[1]

Applications in combinatorics

edit

The  th octagonal number is the number of partitions of   into 1, 2, or 3s.[2] For example, there are   such partitions for  , namely

[1,1,1,1,1,1,1], [1,1,1,1,1,2], [1,1,1,1,3], [1,1,1,2,2], [1,1,2,3], [1,2,2,2], [1,3,3] and [2,2,3].

Sum of reciprocals

edit

A formula for the sum of the reciprocals of the octagonal numbers is given by[3]  

Test for octagonal numbers

edit

Solving the formula for the n-th octagonal number,   for n gives   An arbitrary number x can be checked for octagonality by putting it in this equation. If n is an integer, then x is the n-th octagonal number. If n is not an integer, then x is not octagonal.

See also

edit

References

edit
  1. ^ Deza, Elena; Deza, Michel (2012), Figurate Numbers, World Scientific, p. 57, ISBN 9789814355483.
  2. ^ (sequence A000567 in the OEIS)
  3. ^ "Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers" (PDF). Archived from the original (PDF) on 2013-05-29. Retrieved 2020-04-12.