2021 in archosaur paleontology

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2021, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2021.

List of years in archosaur paleontology
In science
2018
2019
2020
2021
2022
2023
2024
In paleontology
2018
2019
2020
2021
2022
2023
2024
In paleobotany
2018
2019
2020
2021
2022
2023
2024
In arthropod paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoentomology
2018
2019
2020
2021
2022
2023
2024
In paleomalacology
2018
2019
2020
2021
2022
2023
2024
In paleoichthyology
2018
2019
2020
2021
2022
2023
2024
In reptile paleontology
2018
2019
2020
2021
2022
2023
2024
In mammal paleontology
2018
2019
2020
2021
2022
2023
2024

Pseudosuchians

edit

New Pseudosuchian taxa

edit
Name Novelty Status Authors Age Type locality Country Notes Images

Allodaposuchus iberoarmoricanus[1]

Sp. nov

Valid

Blanco

Late Cretaceous (Campanian)

  France

An allodaposuchid eusuchian, a species of Allodaposuchus.

Amphicotylus milesi[2]

Sp. nov

Valid

Yoshida et al.

Late Jurassic (Kimmeridgian)

Morrison Formation

  United States
(  Wyoming)

A goniopholidid crocodyliform, a species of Amphicotylus.

 

Antaeusuchus[3]

Gen. et sp. nov

Valid

Nicholl et al.

Late Cretaceous (Cenomanian)

Kem Kem Group

  Morocco

A peirosaurid crocodylomorph. The type species is A. taouzensis.

 

Aphaurosuchus[4]

Gen. et sp. nov

Valid

Darlim, Montefeltro & Langer

Late Cretaceous (Campanian-Maastrichtian)

Bauru Basin

  Brazil

A baurusuchid crocodylomorph. The type species is A. escharafacies.

Brachiosuchus[5]

Gen. et sp. nov

In press

Salih et al.

Late Cretaceous

Kababish Formation

  Sudan

A dyrosaurid crocodylomorph. The type species is B. kababishensis.

 

Burkesuchus[6]

Gen. et sp. nov

Valid

Novas et al.

Late Jurassic (Tithonian)

Toqui Formation

  Chile

An early member of Mesoeucrocodylia. The type species is B. mallingrandensis.

 

Caipirasuchus attenboroughi[7]

Sp. nov

Valid

Ruiz et al.

Late Cretaceous (Turonian-Campanian)

Santo Anastácio Formation

  Brazil

A sphagesaurid crocodylomorph, a species of Caipirasuchus.

Chinatichampsus[8]

Gen. et sp. nov

Valid

Stocker, Brochu & Kirk

Eocene (Uintan-Duchesnean)

Devil's Graveyard Formation

  United States
(  Texas)

A caiman. The type species is C. wilsonorum.

 

Coronelsuchus[9]

Gen. et sp. nov

Valid

Pinheiro et al.

Late Cretaceous (Turonian)

Araçatuba Formation

  Brazil

A sphagesaurian crocodylomorph. The type species is C. civali

Cricosaurus albersdoerferi[10]

Sp. nov

Valid

Sachs, Young, Abel, & Mallison

Late Jurassic (Kimmeridgian)

Torleite Formation

  Germany

A metriorhynchid thalattosuchian, a species of Cricosaurus.

 
Cricosaurus puelchorum[11] Sp. nov Valid Herrera, Fernández & Vennari Early Cretaceous (Berriasian) Vaca Muerta   Argentina A metriorhynchid thalattosuchian, a species of Cricosaurus. Announced in 2020; the final version of the article naming it was published in 2021.

Cricosaurus rauhuti[12]

Sp. nov

Valid

Herrera, Aiglstorfer & Bronzati

Late Jurassic (Tithonian)

Mörnsheim Formation

  Germany

A metriorhynchid thalattosuchian, a species of Cricosaurus.

Dongnanosuchus[13]

Gen. et sp. nov

Valid

Shan et al.

Eocene

Youganwo Formation

  China

An alligatoroid belonging to the group Orientalosuchina. The type species is D. hsui.

 

Eptalofosuchus[14]

Gen. et sp. nov

Valid

Marinho et al.

Late Cretaceous

Uberaba Formation

  Brazil

A notosuchian crocodylomorph. The type species is E. viridi. Announced in 2021; the final version of the article naming it was published in 2022.

Etjosuchus[15]

Gen. et sp. nov

Valid

Tolchard et al.

Middle Triassic

Omingonde Formation

  Namibia

A non-crocodylomorph loricatan. The type species is E. recurvidens.

Gunggamarandu[16]

Gen. et sp. nov

Valid

Ristevski et al.

Pliocene or Pleistocene

  Australia

A tomistomine crocodylian. The type species is G. maunala.

 

Kocurypelta[17]

Gen. et sp. nov

Valid

Czepiński et al.

Late Triassic (Norian)

Lissauer Breccia

  Poland

An aetosaur. The type species is K. silvestris.

Sebecus ayrampu[18]

Sp. nov

Valid

Bravo, Pol & García-López

Paleocene

Mealla Formation

  Argentina

A sebecid mesoeucrocodylian, a species of Sebecus.

Yanjisuchus[19]

Gen. et sp. nov

Valid

Rummy et al.

Cretaceous (AlbianCenomanian)

Longjing Formation

  China

A paralligatorid crocodyliform. The type species is Y. longshanensis. Announced in 2021; the final version of the article naming it was published in 2022.

Crocodylomorph research

edit
  • A study on the morphological diversity of skull and jaw shape in crocodylomorphs throughout their evolutionary history is published by Stubbs et al. (2021).[20]
  • A study on the evolution of the skull morphology in crocodyliforms is published by Felice, Pol & Goswami (2021).[21]
  • A study on the anatomy, phylogenetic relationships and stratigraphy of the holotype specimen of Notochampsa istedana is published by Dollman et al. (2021).[22]
  • A study on the skull anatomy and phylogenetic placement of Eopneumatosuchus colberti is published by Melstrom, Turner & Irmis (2021).[23]
  • A study on the bite force in mesoeucrocodylians throughout their evolutionary history is published by Gignac, Smaers & O'Brien (2021).[24]
  • A study on feeding habits of notosuchians from the Upper Cretaceous Bauru Group (Brazil), as indicated by stable carbon and oxygen isotope data from tissues of notosuchians from two sites from Bauru Group, is published by Klock et al. (2021).[25]
  • Description of coprolites from the Upper Cretaceous Adamantina Formation (Brazil) found in association with skeletons of baurusuchid and sphagesaurid crocodylomorphs, and a study on the implications of these coprolites for the knowledge of the diet of these crocodylomorphs, is published by de Oliveira et al. (2021).[26]
  • A study on the morphological variation in the dentition of uruguaysuchid crocodylomorphs is published by Figueiredo & Kellner (2021).[27]
  • A study on the bone histology and growth dynamics of Araripesuchus, based on data from specimens from the La Buitrera Palaeontological Area (Río Negro Province, Argentina), is published by Fernández Dumont et al. (2021).[28]
  • A study on the resistance to stress of the skull of Araripesuchus gomesii, and on its implications for the knowledge of likely diet of this crocodylomorph, is published by Nieto et al. (2021).[29]
  • New partially preserved skull of Campinasuchus dinizi is described from the Fazenda São José (Adamantina/Vale do Rio do Peixe Formation, Brazil) by Darlim et al. (2021), who evaluate the implications of this specimen for the knowledge of the distribution of baurusuchids in the Late Cretaceous of South America.[30]
  • The first known baurusuchid yearling is described from the Adamantina Formation (Brazil) by dos Santos et al. (2021).[31]
  • New baurusuchid specimen, providing new information on the skeletal growth in baurusuchids, is described from the Upper Cretaceous Adamantina Formation (Brazil) by Marchetti et al. (2021).[32]
  • A study on the anatomy of the endocranial structures of Zulmasuchus querejazus, and on its implications for the knowledge of the head posture, hearing capabilities and likely lifestyle of this sebecid, is published by Pochat-Cottilloux et al. (2021).[33]
  • New soft tissue records for thalattosuchians are reported from the Late Jurassic localities of Wattendorf and Painten (Bavaria, Germany) by Spindler et al. (2021), who interpret their findings as indicating the skin of metriorhynchids lacked any traces of scales or scutes and instead showed folded and transverse fibers.[34]
  • A study on the nasal and paranasal anatomy of thalattosuchians, and on its implications for the knowledge of the evolution of the paranasal sinus system and nasopharyngeal ducts in Thalattosuchia, is published by Cowgill et al. (2021).[35]
  • Description of the cranial and endocranial anatomy of Macrospondylus bollensis is published by Wilberg et al. (2021).[36]
  • A study on the innervation of the rostrum of metriorhynchoid thalattosuchians, and on its implications for the knowledge of the somatosensory abilities of these crocodylomorphs, is published by Bowman et al. (2021).[37]
  • Isolated metriorhynchid tooth crowns, representing some of the most recent known occurrences of Metriorhynchidae worldwide, are described from the Valanginian Kopřivnice Formation (Czech Republic) by Madzia et al. (2021), who interpret these specimens as evidence of the presence of two distinct lineages of geosaurin metriorhynchids in the area of Czech Republic during the Early Cretaceous.[38]
  • A study on the anatomy of the braincase of a metriorhynchid specimen belonging or related to the species "Metriorhynchus" brachyrhynchus, and on the evolution of neurosensory and endocranial systems of metriorhynchids, is published by Schwab et al. (2021).[39]
  • A study on the anatomy of the snout of Dakosaurus andiniensis, and on the evolution of the facial anatomy of thalattosuchians, is published by Fernández & Herrera (2021), who interpret their findings as indicative of presence of anatomical adaptations likely helping drainage of nasal glands (probably excreting salt).[40]
  • A study on histology and stable isotope geochemistry of the fossil material of Goniopholis and Dyrosaurus, and on their implications for the knowledge whether these crocodylomorphs were ectotherms or endotherms, is published by Faure-Brac et al. (2021).[41]
  • A study on the evolution of tethysuchian and gavialoid crocodylomorphs from the Campanian to the Thanetian is published by Jouve (2021).[42]
  • A study on the histology of the humeri and femora of Hyposaurus rogersii is published by Pellegrini et al. (2021).[43]
  • A study on the anatomy of the braincase and inner ear of Rhabdognathus aslerensis is published by Erb & Turner (2021).[44]
  • A study on the anatomy of the postcranial skeleton of Cerrejonisuchus improcerus is published by Scavezzoni & Fischer (2021), who also provide new information on the anatomy of the postcranial skeletons of Congosaurus bequaerti and Hyposaurus rogersii, and provide evidence of a distinctive postcranial anatomy of dyrosaurids among crocodyliforms.[45]
  • New fossil material of Deltasuchus motherali, providing new information on changes in the skeleton of this crocodyliform during the ontogeny, and indicative of dietary shifts from juvenile to adult, is described from the Cenomanian Woodbine Formation (Texas, United States) by Drumheller et al. (2021), who also study the phylogenetic relationships of D. motherali, and identify an endemic clade of Appalachian crocodyliforms, which they name Paluxysuchidae.[46]
  • Redescription and a study on the phylogenetic relationships of Duerosuchus piscator is published by Narváez et al. (2021).[47]
  • A study on the phylogenetic relationships and the evolutionary history of crocodilians is published by Rio & Mannion (2021).[48]
  • New fossil material of Deinosuchus, representing one of the earliest records of this genus in North American reported to date, is described from the Campanian Menefee Formation (New Mexico, United States) by Mohler, McDonald & Wolfe (2021).[49]
  • Description of the crocodyliform fossil material from the Eocene (Lutetian) Ikovo locality (Ukraine), including the easternmost record of diplocynodontines in Europe reported to date, is published by Kuzmin & Zvonok (2021), who also review the fossil record and biogeography of crocodyliforms from the Paleocene and Eocene of Europe.[50]
  • Description of additional fossil material of Tsoabichi greenriverensis from the Eocene Green River Formation, providing further evidence for its caimanine affinities, and a study on the evolutionary history of caimanines is published by Walter et al. (2021).[51]
  • Cidade & Rincón (2021) report the first occurrence of Acresuchus pachytemporalis from the Miocene Urumaco Formation (Venezuela), expanding known geographic distribution of this species.[52]
  • Description and a study on the taxonomic status of the crocodylians from the Neogene Irrawaddy Formation (Myanmar), including one of the oldest records of the genus Gavialis reported to date, is published by Iijima et al. (2021).[53]
  • Revision of the taxonomy and a study on the phylogenetic relationships of the Miocene tomistomines from Italy and Malta is published by Nicholl et al. (2021).[54]
  • A study on the phylogenetic relationships of Voay robustus, based on mitochondrial genomic data, is published by Hekkala et al. (2021).[55]
  • Description of a new skull of Crocodylus anthropophagus from the DK site at Olduvai (Tanzania), representing the oldest fossil of a member of this species reported to date, and a study on the phylogenetic relationships of this species is published by Azzarà et al. (2021)[56]

Aetosaur research

edit
  • Description of the braincase of Aetosauroides scagliai, based on data from specimens from the Upper Triassic Candelária Sequence (Brazil), is published by Paes Neto et al. (2021).[57]
  • Description of the skull Aetosauroides scagliai, and a study on the likely diet and paleobiology of this aetosaur, is published by Paes Neto et al. (2021).[58]
  • A study on the anatomy of the axial skeleton of Aetosauroides is published by Paes-Neto et al. (2021), who propose that Polesinesuchus aurelioi is a junior synonym of Aetosauroides scagliai.[59]
  • An incomplete, largely articulated postcranial skeleton of a basal aetosaur, possibly distinct from Aetosauroides scagliai, and preserving anatomical features which aren't often preserved in aetosaur specimens (including extensive appendicular armor and a well-preserved caudal ventral carapace), is described from the Upper Triassic Ischigualasto Formation (Argentina) by Hecket, Martínez & Celeskey (2021).[60]
  • An osteoderm of Typothorax coccinarum with punctures and scores which are likely bite marks is described from the Upper Triassic Chinle Formation (Arizona, United States) by Drymala, Bader & Parker (2021), who interpret this finding as supporting the hypothesis that aetosaurs were prey items of large archosauromorphs.[61]
  • Reyes, Parker & Marsh (2021) describe the first complete articulated skull of Typothorax coccinarum from the Owl Rock Member of the Chinle Formation (Petrified Forest National Park), and evaluate the implications of this specimen for the knowledge of the relationships and morphological diversity of aetosaurs.[62]
  • A study on the biomechanical properties of the skull of Neoaetosauroides engaeus is published by Taborda, Desojo & Dvorkin (2021).[63]
  • Revision of isolated braincases of Desmatosuchus from the Placerias Quarry locality in the Chinle Formation (Arizona, United States) is published by von Baczko et al. (2021), who report the presence of two species of Desmatosuchus (D. spurensis and D. smalli) at the Placerias Quarry.[64]

General pseudosuchian research

edit
  • A study on the phylogenetic relationships of pseudosuchian archosaurs, aiming to determine drivers of body size evolution in this group, is published by Stockdale & Benton (2021);[65] the study is subsequently criticized by Benson et al. (2022).[66][67]
  • The first occurrence of the track type "Chirotherium" lulli (inferred to be produced by a pseudosuchian archosaur) from western North America is reported from the Owl Rock Member of the Chinle Formation (Utah, United States) by Milner et al. (2021).[68]
  • A study on the skeletal anatomy and phylogenetic relationships of Revueltosaurus callenderi is published by Parker et al. (2021).[69]
  • A study on the skull anatomy and likely feeding habits of Effigia okeeffeae is published by Bestwick et al. (2021).[70]

Non-avian dinosaurs

edit

New non-avian dinosaur taxa

edit
Name Novelty Status Authors Age Type locality Country Notes Images
Ajnabia[71] Gen. et sp. nov Valid Longrich et al. Late Cretaceous (Maastrichtian) Ouled Abdoun Basin   Morocco A lambeosaurine hadrosaurid. The type species is A. odysseus. Announced in 2020; the final version of the article naming was published in 2021.  

Arackar[72]

Gen. et sp. nov

Valid

Rubilar-Rogers et al.

Late Cretaceous (CampanianMaastrichtian)

Hornitos Formation

  Chile

A lithostrotian titanosaur sauropod. The type species is A. licanantay.

 

Arrudatitan[73]

Gen. et comb. nov

Valid

Silva Junior et al.

Late Cretaceous (Campanian-Maastrichtian)

Adamantina Formation

  Brazil

A titanosaur sauropod; a new genus for "Aeolosaurus" maximus.

 

Australotitan[74]

Gen. et sp. nov

Disputed

Hocknull et al.

Late Cretaceous (Cenomanian-? Turonian)

Winton Formation

  Australia

A titanosaur sauropod. The type species is A. cooperensis. Considered to be an indeterminate diamantinasaurian and a possible junior synonym of Diamantinasaurus matildae by Beeston et al. (2024).[75]

 

Berthasaura[76]

Gen. et sp. nov

Valid

De Souza et al.

Early Cretaceous (Aptian-Albian)

Goio-Erê Formation

  Brazil

A noasaurid theropod. The type species is B. leopoldinae.

 
Brighstoneus[77] Gen. et sp. nov Valid Lockwood et al. Early Cretaceous (Barremian) Wessex Formation   United Kingdom A non-hadrosaurid hadrosauriform. The type species is B. simmondsi.  

Ceratosuchops[78]

Gen. et sp. nov

Valid

Barker et al.

Early Cretaceous (Barremian)

Wessex Formation

  United Kingdom

A spinosaurid theropod. The type species is C. inferodios.

 

Dzharatitanis[79]

Gen. et sp. nov

Valid

Averianov & Sues

Late Cretaceous (Turonian)

Bissekty Formation

  Uzbekistan

A sauropod of uncertain phylogenetic placement. Originally described as a rebbachisaurid, but subsequently argued to be a member of Titanosauria.[80] The type species is D. kingi.

 

Erythrovenator[81]

Gen. et sp. nov

Valid

Müller

Late Triassic (Carnian-Norian)

Candelária Formation

  Brazil

A basal theropod. The type species is E. jacuiensis. Announced in 2020; the final version of the article naming it was published in 2021.

 

Fylax[82]

Gen. et sp. nov

Valid

Prieto-Márquez and Carrera Farias

Late Cretaceous (Maastrichtian)

Figuerola Formation

  Spain

A non-hadrosaurid hadrosauromorph. The type species is F. thyrakolasus.

 

Garrigatitan[83]

Gen. et sp. nov

Valid

Díez Díaz et al.

Late Cretaceous (Campanian)

Grès à Reptiles

  France

A titanosaur sauropod. Genus includes new species G. meridionalis. Announced in 2020; the final version of the article naming it was published in 2021.

Hamititan[84]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous

Shengjinkou Formation

  China

A titanosaur sauropod. The type species is H. xinjiangensis.

 
Issi[85] Gen. et sp. nov Beccari et al. Late Triassic (Norian) Malmros Klint Formation   Greenland A plateosaurid sauropodomorph. The type species is I. saaneq.
 

Kansaignathus[86]

Gen. et sp. nov

Valid

Averianov and Lopatin

Late Cretaceous (Santonian)

Ialovachsk Formation

  Tajikistan

A velociraptorine dromaeosaurid. The type species is K. sogdianus.

 

Khulsanurus[87]

Gen. et sp. nov

Valid

Averianov & Lopatin

Late Cretaceous (Campanian)

Barun Goyot Formation

  Mongolia

An alvarezsaurid theropod. The type species is K. magnificus.

Kuru[88] Gen. et sp. nov Valid Napoli et al. Late Cretaceous (Maastrichtian) Barun Goyot Formation   Mongolia A dromaeosaurid theropod. The type species is K. kulla.
 
Kurupi[89] Gen. et sp. nov Valid Iori et al. Late Cretaceous (Maastrichtian) Marília Formation   Brazil An abelisaurid theropod. The type species is K. itaata.
 

Llukalkan[90]

Gen. et sp. nov

Valid

Gianechini et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

  Argentina

A furileusaurian abelisaurid. The type species is L. aliocranianus.

Menefeeceratops[91]

Gen. et sp. nov

Valid

Dalman et al.

Late Cretaceous (Campanian)

Menefee Formation

  United States
(  New Mexico)

A centrosaurine ceratopsid, possibly a member of the tribe Nasutoceratopsini. The type species is M. sealeyi.

 

Menucocelsior[92]

Gen. et sp. nov Valid Rolando et al. Late Cretaceous (Campanian-Maastrichtian) Allen Formation   Argentina A titanosaur sauropod. The type species is M. arriagadai. Announced in 2021; the final version of the article naming it was published in 2022.

Napaisaurus[93]

Gen. et sp. nov

Valid

Ji & Zhang

Early Cretaceous

Xinlong Formation

  China

A basal member of Iguanodontia. The type species is N. guangxiensis. Announced in 2021; the final version of the article naming it was published in 2022.

Ninjatitan[94]

Gen. et sp. nov

Valid

Gallina, Canale, & Carballido

Early Cretaceous (BerriasianValanginian)

Bajada Colorada Formation

  Argentina

The earliest known titanosaur sauropod found. The type species is N. zapatai.

Omeisaurus puxiani[95]

Sp. nov

Valid

Tan et al.

Middle Jurassic

Shaximiao

  China

A mamenchisaurid sauropod, a species of Omeisaurus. Announced in 2020; the final version of the article naming was published in 2021.

Ornatops[96]

Gen. et sp. nov

Valid

McDonald et al.

Late Cretaceous (Campanian)

Menefee Formation

  United States
(  New Mexico)

A saurolophine hadrosaurid belonging to the tribe Brachylophosaurini. The type species is O. incantatus.

 

Papiliovenator[97]

Gen. et sp. nov

Valid

Pei et al.

Late Cretaceous (Campanian)

Bayan Mandahu Formation

  China

A troodontid theropod. The type species is P. neimengguensis. Announced in 2021; the final version of the article naming it must be published in 2022.

 

Pendraig[98]

Gen. et sp. nov

Valid

Spiekman et al.

Late Triassic (Norian-Rhaetian)

Pant-y-Ffynnon Quarry

  United Kingdom

A basal theropod. The type species is P. milnerae

 

Portellsaurus[99]

Gen. et sp. nov

Valid

Santos-Cubedo et al.

Early Cretaceous (Barremian)

Margas de Mirambell Formation

  Spain

A styracosternan hadrosauroid. The type species is P. sosbaynati

 

Rhomaleopakhus[100]

Gen. et sp. nov

Valid

Upchurch et al.

Late Jurassic (KimmeridgianTithonian)

Kalazha Formation

  China

A sauropod belonging to the family Mamenchisauridae. The type species is R. turpanensis.

Riparovenator[78]

Gen. et sp. nov

Valid

Barker et al.

Early Cretaceous (Barremian)

Wessex Formation

  United Kingdom

A spinosaurid theropod. The type species is R. milnerae.

 

Shri[101]

Gen. et sp. nov

Valid

Turner, Montanari & Norell

Late Cretaceous (Maastrichtian)

Barun Goyot Formation

  Mongolia

A dromaeosaurid theropod. The type species is S. devi.

 
Sierraceratops[102] Gen. et sp. nov Valid Dalman, Lucas Jasinski, & Longrich Late Cretaceous (latest CampanianMaastrichtian) Hall Lake Formation   United States
(  New Mexico)
A chasmosaurine ceratopsid. The type species is S. turneri. Announced in 2021; the final version of the article naming it must be published in 2022.
 

Silutitan[84]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous

Shengjinkou Formation

  China

A sauropod belonging to the family Euhelopodidae. The type species is S. sinensis.

 

Sinocephale[103]

Gen. et comb. nov

Valid

Evans et al.

Late Cretaceous

Ulansuhai Formation

  China

A pachycephalosaur previously classified as Stegoceras. The type species is "Troodon" bexelli Bohlin (1953).

Spicomellus[104] Gen. et sp. nov Valid Maidment et al. Middle Jurassic (Bathonian-Callovian) El Mers Group   Morocco An ankylosaur. The type species is S. afer.  
Stegouros[105] Gen. et sp. nov Soto-Acuña et al. Late Cretaceous (Campanian-Maastrichtian) Dorotea Formation   Chile An ankylosaur. The type species is S. elengassen.  

Tamarro[106]

Gen. et sp. nov

Valid

Sellés et al.

Late Cretaceous (Maastrichtian)

Talarn Formation

  Spain

A troodontid theropod. The type species is T. insperatus.

 

Tarchia tumanovae[107]

Sp. nov

Valid

Park et al.

Late Cretaceous (Campanian-Maastrichtian)

Nemegt Formation

  Mongolia

An ankylosaurid, a species of Tarchia.

 

Tlatolophus[108]

Gen. et sp. nov

Valid

Ramírez-Velasco et al.

Late Cretaceous (Campanian)

Cerro del Pueblo Formation

  Mexico

A lambeosaurine hadrosaurid belonging to the tribe Parasaurolophini. The type species is T. galorum.

 

Ulughbegsaurus[109]

Gen. et sp. nov

Dubious

Tanaka et al.

Late Cretaceous (Turonian)

Bissekty Formation

  Uzbekistan

A theropod of uncertain affinities; originally assigned to the group Carcharodontosauria, but Sues, Averianov & Britt (2022) subsequently argued that it lacked unambiguous diagnostic features of that clade.[110] The type species is U. uzbekistanensis.

 
Vectiraptor[111] Gen. et sp. nov In press Longrich, Martill, & Jacobs Early Cretaceous (Barremian) Wessex Formation   United Kingdom A dromaeosaurid theropod. The type species is V. greeni.  

Yamatosaurus[112]

Gen. et sp. nov

Valid

Kobayashi et al.

Late Cretaceous (Maastrichtian)

Kita-Ama Formation

  Japan

A basal hadrosaurid. The type species is Y. izanagii.

 

Ypupiara[113]

Gen. et sp. nov

Valid

Brum et al.

Late Cretaceous (Maastrichtian)

Marília Formation

  Brazil

An unenlagiine dromaeosaurid. The type species is Y. lopai.

 

Research

edit

General

edit
  • A study on the impact of the disparity between neonates and adults on the structure and diversity of dinosaur communities is published by Schroeder, Lyons & Smith (2021), who claim that communities with giant theropods lacked carnivores weighing 100 to 1000 kg, and argue that juveniles of giant theropod species likely filled the mesocarnivore niche, resulting in reduced overall taxonomic diversity;[114] their conclusions are subsequently contested by Benson et al. (2022).[115][116]
  • Evidence of cessation of longitudinal skeletal growth in non-avian dinosaurs, inferred from a study of the articular surfaces of long bones, is presented by Rothschild & Witzmann (2021).[117]
  • A study aiming to determine the survivorship curves of Albertosaurus sarcophagus, Gorgosaurus libratus, Daspletosaurus torosus, Tyrannosaurus rex, Maiasaura peeblesorum and Psittacosaurus lujiatuensis in populations with an age distribution which was stable in shape over time is published by Griebeler (2021).[118]
  • A study aiming to determine whether the presence of keratan sulfate is exclusive evidence for the presence of medullary bone in dinosaur fossils (and therefore whether it can be used to identify dinosaur specimens as gravid females) is published by Canoville et al. (2021).[119]
  • A study on the variation in tail anatomy and length across the Dinosauria is published by Hone, Persons & Le Comber (2021).[120]
  • A study on the possibilities of determination of the presence of sexual dimorphism in dinosaurs, evaluating whether the previous method used for dinosaurs correctly recognizes living animals as dimorphic, is published by Motani (2021).[121]
  • A study on the role of climate in shaping the geographic distribution of Mesozoic dinosaurs is published by Chiarenza et al. (2021).[122]
  • Review of the fossil record of Carnian dinosaurs from South America is published by Novas et al. (2021), who also interpret Chindesaurus, Daemonosaurus and Tawa as likely late-surviving members of Herrerasauria.[123]
  • A study on dinosaur trackways that show changes in direction from Jurassic and Cretaceous sites in North and South America, Europe and Asia is published by Lockley et al. (2021).[124]
  • Fossil trackways made by theropods, ornithopods and possibly ankylosaurs, are reported from the Folkestone Formation of the Lower Greensand Group by Hadland et al (2021), representing the youngest known footprints of non-avian dinosaurs known from the United Kingdom.[125]
  • A new dinosaur trackway is reported from the Early Cretaceous Eumeralla Formation (Wattle Hill, Australia), by Romilio and Godfrey (2021), who report the presence of ornithopod and bird-like tracks, as well as a large theropod footprint possibly belonging to the ichnogenus Megalosauropus.[126]
  • A study on the climate of the Lufeng area (China) during the Early Jurassic, and on the relations between the global distribution of dinosaur fossils and climate during the Jurassic, is published by Shen et al. (2021).[127]
  • A study on the relationships between diet, tooth complexity and tooth replacement rates in Late Jurassic dinosaurs is published by Melstrom, Chiappe & Smith (2021).[128]
  • Description of the fossil material of a tyrannosauroid theropod and an early member of the family Hadrosauridae from the Upper Cretaceous Merchantville Formation (Delaware and New Jersey, United States), possibly representing new taxa, and a study on the phylogenetic affinities of these dinosaurs is published by Brownstein (2021).[129]
  • Druckenmiller et al. (2021) report the discovery of a diverse assemblage of herbivorous and carnivorous non-avian dinosaurs, including perinatal and very young specimens, from the Upper Cretaceous Prince Creek Formation (Alaska, United States), and interpret this finding as indicating that most, if not all, dinosaurs from this assemblage were nonmigratory year-round Arctic residents.[130]
  • A study on the distribution of dinosaurs across the latest Cretaceous of North America is published by García-Girón et al. (2021).[131]
  • A study aiming to determine whether plant-eating dinosaurs could have moved seeds long distances is published by Perry (2021).[132]
  • Dinosaur tracks with elongated metatarsal marks and superficially human-like appearance are interpreted by Lallensack, Farlow & Falkingham (2021) as more likely to be caused by deep penetrations of the foot in soft sediment than by a plantigrade mode of locomotion.[133]
  • A study on changes of diversity of dinosaurs belonging to the families Ankylosauridae, Ceratopsidae, Hadrosauridae, Dromaeosauridae, Troodontidae and Tyrannosauridae during the Late Cretaceous is published by Condamine et al. (2021), who interpret their findings as indicative of a decline of non-avian dinosaur diversity during the last 10 million years of the Cretaceous period, and attempt to determine possible causes of this decline.[134]
  • The study published by Bonsor et al. (2020), aiming to determine whether non-avian dinosaurs were in long-term decline prior to the Cretaceous–Paleogene extinction event,[135] is criticized by Sakamoto, Benton & Venditti (2021).[136]
  • A study on a dinosaur nesting site preserved in the Upper Cretaceous Wido Volcanics (Wi Island, South Korea) is published by Kim et al. (2021; final version published in 2022), providing new information on how these dinosaurs chose their nesting sites.[137]

Saurischians

edit
  • New fossil material of theropod and sauropod dinosaurs, including a caudal vertebra with pneumatic internal structures rarely observed outside Late Cretaceous South American saltasaurines, is described from the Campanian Quseir Formation (Egypt) by Salem et al. (2021).[138]
  • Evidence indicating that some mid-sized dendroolithid eggs were laid by a therizinosauroid theropod is presented by Kundrát & Cruickshank (2021), who also report the discovery of putative embryonic remains (possibly of a titanosaur sauropod) in a faveoloolithid egg.[139]
  • Putative large-sized sauropodomorph specimen from the Carnian strata at the 'Cerro da Alemoa' locality (southern Brazil) is reinterpreted as a herrerasaurid specimen (the largest dinosaur reported from the Candelária Sequence to date) by Garcia et al. (2021).[140]
  • Putative tracks of a large-bodied predatory dinosaur from the Upper Triassic Blackstone Formation (Australia) are reinterpreted by Romilio et al. (2021) as sharing characteristics with the sauropodomorph ichnogenus Evazoum, and possibly representing the first evidence of basal sauropodomorph dinosaurs from Australia.[141]
Theropods
edit
  • A study aiming to determine whether the knowledge of patterns of species abundance and clade diversity in theropod dinosaurs is significantly impacted by the diagnosability of their fossils is published by Cashmore, Butler & Maidment (2021).[142]
  • A study on the evolution of vision and hearing modalities in theropod dinosaurs is published by Choiniere et al. (2021), who interpret their findings as indicative of early evolution of nocturnal predation in alvarezsauroid theropods.[143]
  • A study on changes of feeding mechanics of theropods throughout their evolutionary history is published by Ma et al. (2021).[144]
  • Bishop et al. (2021) create three-dimensional simulations of gait in Coelophysis bauri, and interpret their findings as indicative of a crucial and dynamic role of the tail in the locomotion of this theropod.[145]
  • A vertebra of a non-coelophysoid, non-averostran neotheropod which may be 15 million years older than Dilophosaurus wetherilli is described from the Lower Jurassic (Hettangian) Whitmore Point Member of the Moenave Formation (Utah, United States) by Marsh et al. (2021), who interpret this finding as indicating that not all contemporaneous theropod traces were made by coelophysoids.[146]
  • McMenamin (2021) describes a humerus of a neotheropod from the Portland Formation of the Early Jurassic (Massachucetts, USA) older and larger than Dilophosaurus, and interpret it as a large piscovorous creature based on the locale's ecology.[147]
  • An assemblage of over 100 theropod footprints of various size and morphology is described from the Lower Jurassic Fengjiahe Formation (China) by Li et al. (2021), representing the track site with the largest number of theropod footprints in Yunnan reported to date.[148]
  • New fossil material of ceratosaur theropods, probably representing one of the oldest known record of abelisaurids, is described from the Upper Jurassic Cañadón Calcáreo Formation (Argentina) by Rauhut & Pol (2021).[149]
  • A study on the skeletal anatomy and phylogenetic relationships of Xenotarsosaurus bonapartei is published by Ibiricu et al. (2021).[150]
  • Two new furileusaurian abelisaurid specimens from the Santonian Bajo de la Carpa Formation (Argentina), providing new information on the abundance of abelisaurids in this area and on variety of abelisaurid morphotypes that coexisted in the north of Argentine Patagonia during the Late Cretaceous, are described by Méndez et al. (2021; final version published in 2022).[151]
  • Description of the preserved integument of Carnotaurus sastrei is published by Hendrickx & Bell (2021).[152]
  • Revision of the phylogenetic affinities and evolutionary significance of Saltriovenator zanellai and Scipionyx samniticus is published by Cau (2021), who interprets his findings as raising doubts on the systematic status of theropod specimens assigned to the family Compsognathidae, which might turn out to be immature individuals belonging to various lineages of large-bodied tetanurans, with the holotype specimen of S. samniticus possibly being an immature carcharodontosaurid.[153]
  • Two trackways belonging to fast-running theropods (probably basal tetanurans) are described from the Lower Cretaceous Enciso Group (Spain) by Navarro-Lorbés et al. (2021), who present the speeds of locomotion calculated for both trackways, which are among the top speeds ever calculated for non-avian theropod tracks, and interpret one of the trackways as produced by a dinosaur with the ability to make and control substantial speed changes while running.[154]
  • Spinosaurid neck vertebrae distinct from known vertebrae of Spinosaurus aegyptiacus and exhibiting an unusual combination of positionally variable characters are described from the Kem Kem Group (Morocco) by McFeeters (2021), who interprets this finding as evidence of a greater degree of intraspecific variation in the vertebrae of S. aegyptiacus than previously recognized, or alternatively, evidence for the occurrence of two spinosaurid taxa in the Kem Kem Group.[155]
  • Spinosaurid caudal vertebrae are described from the Lower Cretaceous Sao Khua Formation (Thailand) by Samathi, Sander & Chanthasit (2021), who also reinterpret the putative ceratosaur Camarillasaurus cirugedae as a spinosaurid.[156]
  • A study on the diversity of the premaxillae shape in spinosaurids, an on its implications for the knowledge of the phylogenetic relationships of the spinosaurids, is published by Lacerda, Grillo & Romano (2021).[157]
  • Hone & Holtz (2021) evaluate the evidence for the competing interpretations of the ecology of Spinosaurus, and reject the interpretation of this theropod as a specialised aquatic pursuit predator.[158]
  • Pahl and Ruedas (2021) suggest that carnosaurs like Allosaurus were primarily scavengers that fed on sauropod carcasses, which they consider to be analogous to whale falls;[159] however, their conclusions are criticized by Kane et al. (2023)[160] but later defended by Pahl and Ruehdas (2023).[161]
  • A study on the histology and geochemistry of a tibia and a femur of a specimen or specimens of Allosaurus fragilis from the Cleveland-Lloyd Dinosaur Quarry (Utah, United States), and on its implications for the knowledge of the growth strategy of this species, is published by Ferrante et al. (2021).[162]
  • Caudal vertebra of a theropod with affinities to Carcharodontosauria is described from the Upper Jurassic Sergi Formation by Bandeira et al. (2021), representing the first unambiguous record of a dinosaur from the Jurassic of Brazil reported to date.[163]
  • A study on the phylogenetic affinities of putative carcharodontosaurid teeth from the Upper Cretaceous strata in northern and central Patagonia, and on their implications for the knowledge of the timing of extinction of carcharodontosaurids in South America, is published by Meso et al. (2021).[164]
  • Description of new fossil material of Phuwiangvenator yaemniyomi from the Lower Cretaceous Sao Khua Formation (Thailand), and a study on its implications for the knowledge of the early evolution of Megaraptora, is published by Samathi et al. (2021).[165]
  • A study on the skeletal anatomy of Aerosteon riocoloradensis is published by Aranciaga Rolando et al. (2021).[166]
  • Fragmentary specimens of tyrannosaurid theropods from the Dinosaur Park Formation of the Alberta, Canada) in the collection of the San Diego Natural History Museum were described by Yun (2021).[167]
  • Bones of tyrannosaurid theropods with extensive tooth marks matching the teeth of tyrannosaurids are described from the Upper Cretaceous of the San Juan Basin (northwestern New Mexico, United States) by Dalman & Lucas (2021), who interpret this finding as evidence for cannibalistic behavior among tyrannosaurids.[168]
  • Caneer, Moklestad & Lucas (2021) describe structures which are not readily assignable to any known ichnotaxon from the Upper Cretaceous of the Raton Basin (New Mexico), and interpret them as one footprint and two forearm/hand prints probably produced by a large tyrannosaurid theropod standing up from a prone position.[169]
  • Perinatal tyrannosaurid bones and teeth are described from the Upper Cretaceous Two Medicine Formation (Montana, United States) and Horseshoe Canyon Formation (Alberta, Canada) by Funston et al. (2021), who evaluate the implications of these findings for the knowledge of the minimum hatchling size of tyrannosaurids, their nesting habits and development of their teeth.[170]
  • A study on tyrannosaurid tracks from the Campanian Wapiti Formation (Alberta, Canada), evaluating the implications of these tracks for the knowledge of changes in pedal anatomy of tyrannosaurids during their ontogeny, is published by Enriquez et al. (2021).[171]
  • Tyrannosaurid fossil material is described from the Blagoveshchensk and Kundur fossil localities (Amur Region, Russia) by Bolotsky, Ermatsans & Bolotsky (2021).[172]
  • A study on possible causes of monopolization of large carnivore guilds in Asian and American dinosaur assemblages by tyrannosaurids in the latest Cretaceous is published by Holtz (2021).[173]
  • A study on the morphology, frequency, and ontogeny of facial bite marks in tyrannosaurid specimens is published by Brown, Currie & Therrien (2021), who interpret the ontogenetic distribution of bite scars in the studied specimens as possible evidence of agonistic behaviour associated with the onset of sexual maturity.[174]
  • A study on changes of mandibular biomechanical properties and tooth morphology in Albertosaurus sarcophagus and Gorgosaurus libratus during their ontogeny is published by Therrien et al. (2021), who interpret their findings as indicating the occurrence of ontogenetic dietary shift in albertosaurine tyrannosaurids.[175]
  • A study on the mechanical properties of the mandibles of tyrannosaurine tyrannosaurids representing different ontogenetic stages (including small juvenile) is published by Rowe & Snively (2021).[176]
  • New bone bed containing at least four specimens of Teratophoneus curriei or a related tyrannosaurid is described from the Campanian Kaiparowits Formation (Utah, United States) by Titus et al. (2021), who study the taphonomy of this bone bed, and evaluate its implications for the knowledge whether known accumulations of tyrannosaurid specimens represent time-averaged or forced accumulations, or whether they are evidence of gregariousness of tyrannosaurids.[177]
  • A metatarsal of juvenile tyrannosaurid theropod from the Dinosaur Park Formation of the Alberta, Canada, possibly referable to Daspletosaurus torosus was described by Yun (2021).[178]
  • A study on the anatomy of the braincases of two specimens of Daspletosaurus is published by Paulina Carabajal et al. (2021).[179]
  • A study aiming to calculate population variables such as abundance at any one time, species persistence and total number of individuals that ever lived for Tyrannosaurus rex is published by Marshall et al. (2021);[180] the study is subsequently criticized by Meiri (2022).[181][182]
  • A study aiming to estimate the natural frequency of the vertical swaying of the tail and the preferred walking speed and step frequency of Tyrannosaurus rex is published by van Bijlert, van Soest & Schulp (2021).[183]
  • A study on the morphology of the neurovascular canal in the dentary of Tyrannosaurus rex is published by Kawabe & Hattori (2021).[184]
  • A study attempting to determine bite force of a juvenile Tyrannosaurus rex, based on mechanical tests designed to replicate bite marks attributed to juvenile specimens of this species, is published by Peterson, Tseng & Brink (2021).[185]
  • A study on the taphonomic and geochemical history of the Tyrannosaurus rex specimen MOR 1125 is published by Ullmann et al. (2021).[186]
  • A study on the anatomy of the postcranial skeleton and on the phylogenetic relationships of Pelecanimimus polyodon is published by Cuesta et al. (2021), who name a new clade Macrocheiriformes, defined as Pelecanimimus and all derived ornithomimosaurs.[187]
  • New ornithomimid fossil material, providing new information on the distal tarsal morphology in ornithomimids, is described from the Campanian Kaiparowits Formation (Utah, United States) by Nottrodt & Farke (2021).[188]
  • A study on pelvic musculature in non-avian maniraptorans is published by Rhodes, Henderson & Currie (2021).[189]
  • A study on the neuroanatomy of a new alvarezsauroid skeleton in the collection of the Henan Geological Museum (China) is published by Agnolín et al. (2021).[190]
  • A study on the skeletal anatomy, probable musculature and likely function of tails of alvarezsaurian theropods is published by Meso et al. (2021).[191]
  • A study on growth strategies and body miniaturization in the evolutionary history of alvarezsauroid theropods is published by Qin et al. (2021).[192]
  • A study on the osteology of Fukuivenator paradoxus is published by Hattori et al. (2021), who described previously undescribed elements and reinterpret this genus as a basal therizinosaur.[193]
  • A study on the anatomy of the postcranial skeleton of Beipiaosaurus inexpectus is published by Liao et al. (2021).[194]
  • Reevaluation of putative blood cells preserved in the holotype specimen of Beipiaosaurus inexpectus is published by Korneisel et al. (2021), who interpret putative blood cells as more likely to be diagenetic structures.[195]
  • Reconstructions of the muscular system of the hindlimb, forelimb and the shoulder girdle of Nothronychus are presented by Smith (2021).[196][197]
  • Zheng et al. (2021) study cellular and nuclear preservation in femoral articular cartilage of a specimen of Caudipteryx from the Yixian Formation (China).[198]
  • Partial skeleton of Elmisaurus rarus, preserving elements overlapping with known fossil material of Nomingia gobiensis, is described from the Upper Cretaceous Nemegt Formation (Mongolia) by Funston et al. (2021), who interpret this specimen as indicating that N. gobiensis is likely a junior synonym of E. rarus.[199]
  • A study on the body mass of Anzu wyliei is published by Atkins-Weltman, Snively & O'Connor (2021).[200]
  • A caenagnathid metatarsal is described from the Campanian Mesaverde Formation (Wyoming, United States; representing the first record of a caenagnathid from this formation) by Yun & Funston (2021), who evaluate the implications of this specimen for the knowledge whether reported differences in metatarsal morphology between "Macrophalangia" and Chirostenotes were merely allometric in nature, or whether they might represent phylogenetically informative variation.[201]
  • An exceptionally preserved, articulated oviraptorid embryo, found inside an elongatoolithid egg in a posture previously unrecognized in a non-avian dinosaur but sharing aspects of bird-like tucking postures, is described from the Upper Cretaceous Hekou Formation (China) by Xing et al. (2021);[202] however, the conclusions of the authors are subsequently contested by Deeming & Kundrát (2022), who argue that this specimen was not close to hatching, and that the positioning of its head relative to its body cannot bear any relationship to hatching position of this animal.[203]
  • Cau et al. (2021) report the identification of additional elements of the pectoral apparatus of the holotype specimen of Halszkaraptor escuilliei, including the furcula, and evaluate its implications for the knowledge of the evolution of the avian furcula.[204]
  • A study on the anatomy of the skeleton of Unenlagia comahuensis is published by Novas et al. (2021).[205]
  • A study on the vertebral pneumaticity in Unenlagia comahuensis is published by Gianechini & Zurriaguz (2021).[206]
  • Description of a new troodontid specimen from the Upper Cretaceous Wulansuhai Formation (China), and a study on the phylogenetic relationships and evolutionary history of the Late Cretaceous troodontids, is published by Wang et al. (2021).[207]
  • A unique troodontid nest is described by Maipig et al. (2021), preserving a unique spiral pattern of eggs embedded vertically into substrate.[208]
  • Multi-individual aggregates of mammal skeletons are described from the Upper Cretaceous Two Medicine Formation (Montana, United States) by Freimuth et al. (2021), who interpret these aggregates as the oldest known mammal-bearing regurgitalites, probably produced by Troodon formosus.[209]
  • A study on the anatomy and phylogenetic relationships of Borogovia gracilicrus is published by Cau & Madzia (2021).[210]
  • Brown, Tanke & Hone (2021) describe a hadrosaurid bone from the Campanian Dinosaur Park Formation (Alberta, Canada) preserved with bite marks produced by a small- to medium-sized theropod dinosaur, deviating from the majority of known theropod tooth marks and indicative of a behavior similar to mammalian gnawing.[211]
  • Revision of the biodiversity of theropods from the Dinosaur Park Formation is published by Cullen et al. (2021).[212]
  • Exquisitely preserved, ornamented partial eggs with theropod affinities, representing some of the smallest Mesozoic eggs reported to date, are described from the Campanian Kaiparowits Formation (Utah, United States) by Oser et al. (2021), who name a new ootaxon Stillatuberoolithus storrsi.[213]
Sauropodomorphs
edit
  • Review of the diversity and composition of South American sauropodomorph faunas throughout the Late Triassic is published by Pol et al. (2021).[214]
  • A study on the evolution of the olfactory system in sauropodomorph dinosaurs, as indicated by the ratio between the size of the olfactory bulbs and cerebral hemispheres in sauropodomorph endocasts, is published by Müller (2021).[215]
  • A study on the timing of the earliest occurrence of Triassic sauropodomorphs in their northernmost range (Fleming Fjord Formation, Greenland), and on possible relationship between climate changes and early sauropodomorph dispersal to the temperate belt of the Northern Hemisphere, is published by Kent & Clemmensen (2021).[216]
  • Probable tracks of large sauropodomorphs dinosaurs, potentially representing the largest known tracks belonging to the ichnogenus Eosauropus reported to date, are described from the Upper Triassic (likely Rhaetian) Blue Anchor Formation (Penarth, south Wales, United Kingdom) by Falkingham et al. (2021).[217]
  • A study on the evolution of the morphological diversity of sauropodomorph dinosaurs is published by Apaldetti et al. (2021).[218]
  • New skull material of Plateosaurus, including the first two juvenile skulls of members of this genus, is described from the locality of Frick (Switzerland) by Lallensack et al. (2021), who attempt to determine whether the locality of Frick and German localities of Trossingen and Halberstadt contain specimens of Plateosaurus belonging to a single species.[219]
  • A study on the skeletal growth during the ontogeny in Massospondylus carinatus is published by Chapelle, Botha & Choiniere (2021).[220]
  • A study on the age of the fossil material of Yunnanosaurus youngi is published by Ren et al. (2021).[221]
  • A study on the cranial anatomy of Anchisaurus polyzelus and the development of cranial characters in sauropodomorph ontogeny is published by Fabbri et al. (2021)[222]
  • An assemblage including over 100 eggs and skeletal specimens of 80 specimens of Mussaurus patagonicus, ranging from embryos to fully-grown adults, is described from the Laguna Colorada Formation (Argentina) by Pol et al. (2021), who assign an Early Jurassic (Sinemurian) maximum age for the Mussaurus bearing sediments, and interpret this assemblage as likely evidence of colonial nesting habits, presence of social cohesion throughout the different stages of the lifespan, and age-based social partitioning within a herd structure in Mussaurus.[223]
  • An extensive Late Jurassic sauropod tracksite, preserving the longest continuous sequence of sauropod pes prints reported to date and representing a rare record of a >180° turn made by the sauropod trackmaker to completely change direction and cross its own trackway, is described from a high altitude locality near Ouray (Colorado, United States) by Goodell et al. (2021).[224]
  • A study on the anatomy of the axial skeleton of Bagualia alba is published by Gomez, Carballido & Pol (2021).[225]
  • New fossil material of Shunosaurus, providing new information on the development of the skeleton of this sauropod during its ontogeny, is described from the Middle Jurassic Shaximiao Formation (China) by Ma et al. (2021).[226]
  • A study on the skeletal anatomy of the holotype of Patagosaurus fariasi is published by Holwerda, Rauhut & Pol (2021).[227]
  • A new specimen of Haplocanthosaurus with expanded neural canals is described by Wedel et al. (2021).[228]
  • A study on the anatomy and phylogenetic relationships of Amphicoelias altus is published by Mannion, Tschopp & Whitlock (2021).[229]
  • The paleohistology of two dicraeosaurids from the La Amarga Formation (Argentina) is studied by Winholdz and Cerda (2021), who find that the holotype specimen of Amargatitanis macni belonged to a more mature individual than the holotype of Amargasaurus cazaui.[230]
  • Fossilized skin of a juvenile member of the genus Diplodocus, providing evidence of new scale shapes and patterns never before seen in diplodocids, is described from the Mother's Day Quarry (Bighorn Basin, Montana, United States) by Gallagher, Poole & Schein (2021).[231]
  • A study on the anatomy of the braincase of a diplodocid sauropod (possibly Leinkupal laticauda) from the Lower Cretaceous Bajada Colorada Formation (Argentina) is published by Garderes et al. (2021; final version published in 2022).[232]
  • Redescription of the anatomy of the braincase of Limaysaurus tessonei is published by Paulina-Carabajal & Calvo (2021).[233]
  • A description of well preserved fossil material of Camarasaurus, including an articulated, nearly-complete skull, and an analysis of variability within the genus based on cranial allometry trends is published by Woodruff et al. (2021).[234]
  • Partial sauropod maxilla, possibly belonging to a brachiosaurid, is described from the Cretaceous (AlbianCenomanian) Longjing Formation (northeast China) by Liao et al. (2021).[235]
  • Sauropod tracks probably produced by non-titanosaurian titanosauriforms are described from the Rupelo Formation (Spain) by Torcida Fernández-Baldor et al. (2021), who evaluate the paleoenvironmental and paleoecological implications of this finding, and name a new ichnotaxon Iniestapodus burgensis.[236]
  • A study on tooth replacement rates in early somphospondylans, as indicated by data from a dentary from the Lower Cretaceous (AptianAlbian) Haoling Formation (China), is published by Chang et al. (2021).[237]
  • A study aiming to determine whether titanosaur osteoderms could act as defensive structures is published by Silva Junior et al. (2021; final version published in 2022).[238]
  • Description of the anatomy of the referred specimen of Diamantinasaurus matildae and a study on the phylogenetic relationships of this species is published by Poropat et al. (2021), who name a new clade Diamantinasauria, which includes it alongside Savannasaurus and Sarmientosaurus.[239]
  • Fossil material of a giant titanosaur sauropod, distinct from Andesaurus and probably exceeding Patagotitan in size, is described from the Cenomanian Candeleros Formation (Argentina) by Otero et al. (2021).[240]
  • Revision of known fossil material of Pellegrinisaurus powelli and a study on the skeletal anatomy, bone histology and phylogenetic relationships of this sauropod are published by Cerda et al. (2021).[241]
  • New titanosaur remains, possibly belonging to a member of Colossosauria distinct from previously known taxa, are described from the Upper Cretaceous Portezuelo Formation (Argentina) by Bellardini et al. (2021).[242]
  • A study on the anatomy of the axial skeleton of Rinconsaurus caudamirus is published by Pérez Moreno et al. (2021).[243]
  • A study on the composition of several gastroliths from the Morrison are published by Malone, Strasser, Malone, D'Emic, Brown, and Craddock, who point to the differences between them and the surrounding rock and similarities to another site 1,000 km eastwards to suggest evidence of migration in sauropod dinosaurs.[244]
  • Description of new fossil material and a study on the phylogenetic relationships of Tengrisaurus starkovi is published by Averianov, Sizov & Skutschas (2021).[245]
  • Aureliano et al. (2021) report preservation of histological structure related to an avian-like air sac system in a vertebra of a saltasaurid titanosaur from the Upper Cretaceous São José do Rio Preto Formation (Bauru Group, Brazil).[246]
  • Evidence of the preservation of nitrogen-bearing organic molecules (identified as proteinaceous moieties) in titanosaur eggshell from the Maastrichtian Lameta Formation (India) is presented by Dhiman et al. (2021).[247]
  • A study on the stable isotope compositions of titanosaurian eggshells, bone and an associated tooth sampled in three Late Cretaceous nesting sites from La Rioja Province (Argentina), evaluating their implications for the knowledge of the body temperature of titanosaur sauropods, their diet, and the environmental conditions they needed reproduce, is published by Leuzinger et al. (2021).[248]

Ornithischians

edit
  • Revision of the phylogenetic nomenclature of ornithischian dinosaurs is published by Madzia et al. (2021), who name new clades Corythosauria, Euceratopsia, Saphornithischia, Panoplosaurini and Struthiosaurini.[249]
  • New fossil material of ornithischians, including remains of basal euiguanodontian and hadrosaurid ornithopods and the southernmost record of ankylosaurs from South America reported to date, is described from the Upper Cretaceous (CampanianMaastrichtian) Chorrillo Formation (Argentina) by Rozadilla et al. (2021), who evaluate the implications of these fossils for the knowledge of the evolutionary history of ankylosaurs and hadrosaurids in South America.[250]
  • A study on the Late Cretaceous ornithischian assemblage of western North America, aiming to examine the prediction that juveniles of large herbivores competitively excluded small herbivorous species, and that the small species that were able to coexist alongside the juveniles of larger species did so because of their unique occupation of niche space, is published by Wyenberg-Henzler, Patterson & Mallon (2021).[251]
  • Radermacher et al. (2021) describe a new, fully articulated skeleton of Heterodontosaurus tucki, preserving a suite of novel postcranial features unknown in any other ornithischian dinosaur, and evaluate the implications of this specimen for the knowledge of the evolution of ornithischian respiratory biology.[252]
Thyreophorans
edit
  • A study on the skeletal anatomy and bone histology of Scutellosaurus lawleri, providing new data on the morphology and new life reconstruction for this dinosaur, is published by Breeden et al. (2021).[253]
  • A stegosaurian humerus is described from the Cañadón Calcáreo Formation (Argentina) by Rauhut, Carballido & Pol (2021), extending the fossil record of Stegosauria to the Late Jurassic of South America.[254]
  • A study on the morphology, macro- and microwear, and microanatomy of the stegosaur teeth from the Teete locality (Lower Cretaceous Batylykh Formation; Sakha, Russia), evaluating their implications for the knowledge of the paleobiology of the Teete stegosaur, is published by Skutschas et al. (2021).[255]
  • The smallest stegosaur track reported to date, co-occurring with the tracks of larger individuals, is described from the Lower Cretaceous Tugulu Group (Xinjiang, China) by Xing et al. (2021).[256]
  • The type locality and holotype of Dracopelta zbyszewskii are reinterpreted by Russo & Mateus (2021), who also chronicle the history of the holotype.[257]
  • Riguetti et al. (2021) describe nodosaurid tracks from the Maastrichtian El Molino Formation (Bolivia), increasing known diversity of ankylosaur tracks from South America.[258]
  • Several fragmentary skulls and skull elements of Hungarosaurus, providing new information on the morphological diversity, development and possible function of the ornamentation of nodosaurid skulls, are described by Ősi et al. (2021).[259]
  • A study on dental microwear and jaw movement of Jinyunpelta, and on its implications for the knowledge of the evolution of the feeding mechanism of ankylosaurids, is published by Kubo et al. (2021).[260]
  • Articulated postcranial skeleton of an indeterminate ankylosaurid dinosaur is described from the Barun Goyot Formation (Mongolia) by Park et al. (2021), who interpret this specimen as indicating that Asian ankylosaurids evolved rigid bodies with a reduced number of pedal phalanges, as well as the existence of at least two forms of flank armor in ankylosaurids, and discuss possible adaptations for digging in ankylosaurids.[261]
Cerapods
edit
  • A study on the skeletal anatomy and phylogenetic relationships of Haya griva is published by Barta & Norell (2021).[262]
  • Duncan et al. (2021) describe ornithopod jaws from the Lower Cretaceous Eumeralla Formation (Australia), and evaluate the implications of these fossils for the knowledge of the diversity of Early Cretaceous ornithopods from this area.[263]
  • A study on the anatomy of the manus of Tenontosaurus tilletti is published by Hunt, Cifelli & Davies (2021).[264]
  • A study on the accumulated remains of Dysalotosaurus lettowvorbecki from the Upper Jurassic Tendaguru Formation (Tanzania) is published by Hübner et al. (2021), who interpret two large bonebeds as most likely resulting from two independent catastrophic mortality events.[265]
  • A study on the anatomy of the braincase and probable brain size in Proa valdearinnoensis is published by Knoll et al. (2021).[266]
  • A specimen of Gobihadros mongoliensis preserving features of cessation of growth, indicating that it reached the terminal size and advanced age, is described from the Upper Cretaceous Bayan Shireh Formation (Mongolia) by Słowiak et al. (2021), who diagnose this specimen as affected by calcium pyrophosphate deposition disease, making it the first known non-avian dinosaur specimen affected with this disease.[267]
  • Redescription of the anatomy and a study on the phylogenetic relationships of Lophorhothon atopus, based on data from the holotype and from a new specimen, is published by Gates & Lamb (2021).[268]
  • A study on the anatomy of the postcranial skeleton of Tanius sinensis is published by Borinder et al. (2021).[269]
  • Description of new fossil material of Tethyshadros insularis from the Villaggio del Pescatore fossil site (Italy), a study on the age of this site and on the phylogenetic affinities of T. insularis, and a reevaluation of claims about the evolution of insular dwarfism in Late Cretaceous hadrosauroids, is published by Chiarenza et al. (2021).[270]
  • Description of new fossil material of hadrosaurids from the Upper Cretaceous Lago Colhué Huapí Formation (Argentina), and a study on the environment inhabited by these hadrosaurids and on the influence of paleoenvironmental conditions on South American hadrosaurid distribution, is published by Ibiricu et al. (2021).[271]
  • Holland et al. (2021) describe an assemblage of late juvenile hadrosaurid specimens from the Spring Creek Bonebed (Alberta, Canada), representing the first record of lambeosaurines from the Wapiti Formation and possibly indicating that age segregation was a life history strategy among hadrosaurids.[272]
  • Revision of the type material and a study on the phylogenetic affinities of Latirhinus uitstlani is published by Ramírez-Velasco, Espinosa-Arrubarrena & Alvarado-Ortega (2021);[273] a study on the taphonomy of the skeletal elements in the holotype of L. uitstlani designated by the aforementioned authors, on the skeletal composition of the holotype, on the diagnostic utility of the characters used by Ramírez-Velasco, Espinosa-Arrubarrena & Alvarado-Ortega (2021) for referring other specimens to different hadrosaurid clades, and on the phylogenetic affinities of L. uitstlani is subsequently published by Serrano-Brañas & Prieto-Márquez (2021).[274]
  • Redescription of Parasaurolophus cyrtocristatus, based on data from a new skull from the Campanian Fruitland Formation (New Mexico, United States), is published by Gates, Evans & Sertich (2021).[275]
  • A study on the injuries of the holotype specimen of Bonapartesaurus rionegrensis, and on their implications for the knowledge of its paleobiology, is published by Cruzado-Caballero et al. (2021).[276]
  • Five new partial skulls of Maiasaura peeblesorum, providing information on the acquisition of the crest and changes to the surrounding cranial elements during the ontogeny of this dinosaur, are described from the Campanian Two Medicine Formation (Montana, United States) by McFeeters, Evans & Maddin (2021).[277]
  • A study aiming to determine the taxonomic validity of the species Sphaerotholus buchholtzae and S. edmontonensis is published by Woodruff et al. (2021).[278]
  • Vinther, Nicholls & Kelly (2021) describe the first fossil cloacal vent in an exceptionally preserved non-avian dinosaur specimen (a specimen of Psittacosaurus from the Early Cretaceous Jehol deposits of Liaoning, China).[279]
  • A study on jaws and teeth of juvenile and adult specimens of Psittacosaurus lujiatunensis, aiming to determine whether this dinosaur underwent a dietary shift during its ontogeny, is published by Landi et al. (2021).[280]
  • A study on the ontogenetic changes in the femoral histology of Psittacosaurus sibiricus is published by Skutschas et al. (2021).[281]
  • A study on the whole-skull shape in a large sample of specimens of Protoceratops andrewsi is published by Knapp, Knell & Hone (2021), who argue that the frill of P. andrewsi shows several characteristics consistent with a socio-sexual trait.[282]
  • A study on the anatomy of a specimen of Protoceratops andrewsi from the Bayan Zag locality (Djadochta Formation, Mongolia), interpreted as most likely to be a large immature female, and on its implications for explanation of the polymorphism in the fossil material attributed to P. andrewsi and for diagnosing P. andrewsi from vertebrae considering the age and sex of compared specimens, is published by Tereshchenko (2021).[283]
  • Description of a skull of a subadult specimen of Einiosaurus procurvicornis from the Two Medicine Formation (Montana, United States), and a study on the implications of this specimen for the knowledge of the sequence and timing of development of primary cranial ornaments in eucentrosauran ceratopsids, is published by Wilson & Scannella (2021).[284]
  • A study on the dentition of Stegoceras validum and Thescelosaurus neglectus, and on its implications for the knowledge of the feeding behavior of these ornithischians, is published by Hudgins, Currie & Sullivan (2021).[285]
  • A study on the biodiversity patterns of Late Cretaceous hadrosaurids and ceratopsids from the western interior of North America, evaluating whether the fossil record provides evidence of faunal provinciality of these dinosaurs, is published by Maidment et al. (2021).[286]

Birds

edit

New Bird taxa

edit
Name Novelty Status Authors Age Type locality Country Notes Images

Apteryx littoralis[287]

Sp. nov

Valid

Tennyson & Tomotani

Pleistocene

Upper Rangitikei Formation

  New Zealand

A kiwi.

Archaehierax[288]

Gen. et sp. nov

Valid

Mather et al.

Late Oligocene

Namba Formation

  Australia

A member of the family Accipitridae. The type species is A. sylvestris.

Archaeodromus[289]

Gen. et sp. nov

Valid

Mayr

Eocene (Ypresian)

London Clay

  United Kingdom

A member of the family Archaeotrogonidae. The type species is A. anglicus.

Bitumenpicus[290]

Gen. et sp. nov

Valid

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

  United States
(  California)

A woodpecker. The type species is B. minimus.

Breacopus[290]

Gen. et sp. nov

Valid

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

  United States
(  California)

A woodpecker. The type species is B. garretti.

Brevidentavis[291]

Gen. et sp. nov

In press

O'Connor et al.

Early Cretaceous

Xiagou Formation

  China

An early member of Ornithuromorpha. The type species is B. zhangi. The generic name "Brachydontornis" is also used by the authors.

Brevirostruavis[292]

Gen. et sp. nov

In press

Li et al.

Early Cretaceous

Jiufotang Formation

  China

A member of Enantiornithes. The type species is B. macrohyoideus.

 

Bumbalavis[293]

Gen. et sp. nov

Valid

Zelenkov

Late Paleocene-early Eocene

Naran-Bulak Formation

  Mongolia

A member of the family Presbyornithidae. The type species is B. anatoides.

Bumbanipes[294]

Gen. et sp. nov

Valid

Zelenkov

Early Eocene

  Mongolia

A member of Gruiformes showing the greatest similarity with modern limpkin. The type species is B. aramoides.

Bumbanipodius[294]

Gen. et sp. nov

Valid

Zelenkov

Early Eocene

  Mongolia

A member of Galliformes showing morphological similarities with Argillipes aurorum and members of the family Quercymegapodiidae. The type species is B. magnus.

Bumbaniralla[294]

Gen. et sp. nov

Valid

Zelenkov

Early Eocene

  Mongolia

Bird described on the basis of a coracoid, morphologically intermediate between those of Walbeckornis and members of the family Messelornithidae. The type species is B. walbeckornithoides.

Bumbanortyx[294]

Gen. et sp. nov

Valid

Zelenkov

Early Eocene

  Mongolia

A small galliform bird showing morphological similarities with members of the families Quercymegapodiidae and Gallinuloididae. The type species is B. transitoria.

Buteo dondasi[295]

Sp. nov

Valid

Degrange et al.

Pliocene (Piacenzian)

Chapadmalal Formation

  Argentina

A large buzzard, a species of Buteo.

Buteogallus irpus[296]

Sp. nov

Valid

Suárez & Olson

Quaternary (probably late Pleistocene)

  Cuba
  Dominican Republic

A species of Buteogallus.

Crosnoornis[297]

Gen. et sp. nov

In press

Bocheński et al.

Oligocene (Rupelian)

  Poland

A passerine, an early member of Suboscines. The type species is C. nargizia.

Eopelecanus[298]

Gen. et sp. nov

Valid

El Adli et al.

Eocene (Priabonian)

Birket Qarun Formation

  Egypt

A pelican. The type species is E. aegyptiacus.

 

Fortipesavis[299]

Gen. et sp. nov

Valid

Clark & O'Connor

Early Cretaceous (Albian)

Burmese amber

  Myanmar

A member of Enantiornithes. The type species is F. prehendens.

Gallirallus astolfoi[300]

Sp. nov

Valid

Salvador, Anderson & Tennyson

Holocene

  French Polynesia

A species of Gallirallus.

 

Kairuku waewaeroa[301]

Sp. nov

Valid

Giovanardi, Ksepka & Thomas

Oligocene (Whaingaroan)

Glen Massey Formation

  New Zealand

A penguin, a species of Kairuku.

Klallamornis buchanani[302]

Comb nov

valid

(Dyke, Wang, & Habib)

Oligocene

Pysht Formation

  USA
  Washington

A plotopterid.
Transferred from "Tonsala" buchanani (2011).[303]

 
Klallamornis buchanani

Kaririavis[304]

Gen. et sp. nov

Valid

Carvalho et al.

Early Cretaceous (Aptian)

Crato Formation

  Brazil

An early member of Ornithuromorpha. The type species is K. mater.

Manuherikia primadividua[305]

Sp. nov

In press

Worthy et al.

Miocene

Bannockburn Formation

  New Zealand

A member of the family Anatidae from the St Bathans fauna.

Marambiornopsis[306]

Gen. et sp. nov

Valid

Jadwiszczak, Reguero & Mörs

Eocene (Priabonian)

Submeseta Formation

Antarctica

A small-sized penguin. The type species is M. sobrali.

 

Margarobyas abronensis[307]

Sp. nov

In press

Zelenkov & González

Late Pleistocene

  Cuba

A species of Margarobyas.

Meemannavis[291]

Gen. et sp. nov

In press

O'Connor et al.

Early Cretaceous

Xiagou Formation

  China

An early member of Ornithuromorpha. The type species is M. ductrix.

Melanerpes shawi[290]

Sp. nov

Valid

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

  United States
(  California)

A woodpecker, a species of Melanerpes.

Neimengornis[308] Gen. et sp. nov Wang et al. Early Cretaceous Jiufotang Formation   China A member of Jeholornithiformes. The type species is N. rectusmim.

Palaeogeranos[309]

Gen. et sp. nov

Valid

Louchart & Duhamel

Early Oligocene

  France

A member of Gruoidea related to the limpkin and cranes. The type species is P. tourmenti.

Parapsittacopes[310]

Gen. et sp. nov

Valid

Mayr

Early Eocene

London Clay

  United Kingdom

A relative of Psittacopes, Pumiliornis and Morsoravis. The type species is P. bergdahli.

Pica praepica[311]

Sp. nov

Valid

Boev

Early Pleistocene

  Bulgaria

A species of Pica.

Procellaria altirostris[312]

Sp. nov

Valid

Tennyson & Tomotani

Pliocene (Piacenzian)

Tangahoe Formation

  New Zealand

A species of Procellaria.

Tynskya waltonensis[313]

Sp. nov

Valid

Mayr

Eocene (Ypresian)

London Clay

  United Kingdom

A species of the messelasturid Tynskya.

Ueekenkcoracias[314]

Gen. et sp. nov

Degrange et al.

Eocene (Ypresian)

Huitrera Formation

  Argentina

A member of the stem group of Coracii. The type species is U. tambussiae.

 
Vinchinavis[315] Gen. et sp. nov Valid Tambussi et al. Miocene Toro Negro   Argentina A large eagle. The type species is V. paka. Announced in 2020; the final version of the article naming it was published in 2021.

Yuanchuavis[316]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous

Jiufotang Formation

  China

A member of Enantiornithes belonging to the family Pengornithidae. The type species is Y. kompsosoura.

 

Yuornis[317]

Gen. et sp. nov

In press

Xu et al.

Late Cretaceous

Qiupa Formation

  China

A member of Enantiornithes. The type species is Y. junchangi.

 

Research

edit
  • The study on the phylogenetic relationships and powered flight potential of early birds and their closest relatives published by Pei et al. (2020), arguing that the potential for powered flight evolved at least three times (once in birds and twice in dromaeosaurids),[318] is criticized by Serrano & Chiappe (2021).[319][320]
  • Review of the most relevant events in limb evolution across the dinosaur-bird transition and the origins of bird flight is published by Nebreda, Hernández Fernández & Marugán-Lobón (2021).[321]
  • A study on the diversification rates of birds throughout their evolutionary history is published by Yu, Zhang & Xu (2021).[322]
  • A study on the evolution of the brain in birds, based on data from extant and recently extinct birds, Archaeopteryx and non-avian coelurosaurian theropods, is published by Watanabe et al. (2021).[323]
  • A study aiming to infer the diets of the last common ancestor of living birds, based on data from digestive system-related genes, is published by Wu (2021), who interprets his findings as indicative of a diet shift from carnivory to herbivory at the non-avian archosaur-to-bird transition, and evaluates possible implications of this diet shift for the evolution of early birds.[324]
  • Review of methods used to determine diet in modern and fossil birds, evaluating their utility for determination of diets of Mesozoic birds, is published by Miller & Pittman (2021).[325]
  • A study on patterns and modes of the evolution of skeletal morphology and limb proportions in Mesozoic birds is published by Wang et al. (2021).[326]
  • A study on the variation in tooth crown shape of Mesozoic birds, and its implications for the knowledge of their diets, is published by Zhou et al. (2021).[327]
  • A study on the impact of tooth loss on the diversification of Mesozoic birds is published by Brocklehurst & Field (2021), who find no evidence for a link between toothlessness and accelerated cladogenesis, as well as no evidence for models whereby acquisitions of toothlessness among Mesozoic birds were driven by an overarching selective trend.[328]
  • Review of the variability of bone histology in basal members of Avialae is published by Monfroy & Kundrát (2021).[329]
  • A study on the ecomorphology of extant and fossil birds, aiming to determine whether the ecologies of Mesozoic birds can be inferred on the basis of data from measurements of their forelimbs and hindlimbs, is published by Bell et al. (2021).[330]
  • The study published by Kaye, Pittman & Wahl (2020), reporting evidence interpreted by the authors as indicative of the feather moulting in the Thermopolis specimen of Archaeopteryx,[331] is criticized by Kiat et al. (2021).[332][333]
  • A study on the cellular preservation in the calcified cartilage of specimens of Confuciusornis and Yanornis from the Early Cretaceous Jehol biota (northeast China) is published by Bailleul & Zhou (2021).[334]
  • A study on the nanostructures of the melanosomes sampled from a specimen of Eoconfuciusornis from the Lower Cretaceous Huajiying Formation (China) is published by Pan et al. (2021), who interpret their findings as evidence of brilliant iridescent plumage color in Eoconfuciusornis.[335]
  • A study on the histology of the scapulocoracoid in Confuciusornis is published by Wu et al. (2021).[336]
  • New enantiornithine specimen with a well-preserved skull, retaining the plesiomorphic dinosaurian palate and diapsid temporal configurations indicative of an akinetic skull, is described from the Lower Cretaceous Jiufotang Formation (China) by Wang et al. (2021), who evaluate the implications of this specimen for the knowledge of the evolution of bird skulls.[337]
  • A study on teeth replacement patterns in members of Enantiornithes, based on data from three specimens from the Cretaceous Adamantina Formation (Brazil), is published by Wu et al. (2021).[338]
  • A study aiming to infer resting metabolic rates of Concornis and Iberomesornis on the basis of data from bone histology is published by Cubo et al. (2021).[339]
  • A study on the anatomy of the quadrate bone of Longipteryx chaoyangensis, evaluating its possible functional implications, is published by Stidham & O'Connor (2021), who consider Camptodontornis yangi and Shengjingornis yangi as synonyms of Longipteryx.[340]
  • Description of a new bohaiornithid specimen from the Lower Cretaceous Jiufotang Formation (China), providing new information on the skull anatomy and teeth replacement pattern in bohaiornithids, and a study on the phylogenetic relationships of enantiornithines traditionally included in the family Bohaiornithidae, is published by Liu et al. (2021; final version published in 2022).[341]
  • A study on the identity of purported gastroliths reported in a referred specimen of Bohaiornis guoi from the Early Cretaceous of China is published by Liu et al. (2021).[342]
  • A study on the bone histology and growth of the skeleton of Mirarce eatoni is published by Atterholt et al. (2021).[343]
  • An almost complete juvenile specimen of Archaeorhynchus is described from the Aptian Jiufotang Formation (China) by Foth et al. (2021), who evaluate the implications of the anatomy of this specimen for the knowledge of the ontogenetic development of Mesozoic birds.[344]
  • A study on variations in bone growth and on the thermal regime of Yanornis martini is published by Monfroy et al. (2021).[345]
  • Ju et al. (2021) revise the fossil material of Iteravis huchzermeyeri and Gansus zheni, and consider these species to be synonymous.[346]
  • A study on the bone histology of Gansus yumenensis, and on its implications for the knowledge of the evolution of uninterrupted bone deposition in birds, is published by Monfroy et al. (2021).[347]
  • A cervical vertebra of a member of Ornithuromorpha distinct from Gargantuavis, representing the first fossil evidence of a giant bird from the late Maastrichtian of Europe reported to date, is described from Beranuy (Huesca, Spain) by Pérez-Pueyo et al. (2021).[348]
  • Torres, Norell & Clarke (2021) describe a new specimen of Ichthyornis dispar from the Niobrara Formation (Kansas, United States), preserving a nearly complete skull, and evaluate the implications of the anatomy of this specimen for the knowledge of the evolution of birds and for the knowledge of probable reasons why birds survived the end-Cretaceous mass extinction.[349]
  • New information on the anatomy of Vegavis iaai, based on data from the holotype specimen which was fully extracted from the sedimentary matrix, is presented by Acosta Hospitaleche & Worthy (2021).[350]
  • Mayr & Zelenkov (2021) interpret eogruids and ergilornithids as representatives of the stem group of Struthioniformes, based on data from new fossils from the late Eocene of Mongolia.[351]
  • A fossil ostrich specimen with exceptional soft-tissue preservation is described from the Miocene Liushu Formation (Linxia Basin, China) by Li et al. (2021).[352]
  • A femur of a giant ostrich, significantly larger than the living common ostrich, is described from the Pleistocene Nihewan Formation (China) by Buffetaut & Angst (2021), who assign it to Pachystruthio indet. and interpret this finding as evidence of wide geographical distribution of giant ostriches in the Early Pleistocene of Eurasia.[353]
  • A study on the phylogenetic relationships and evolutionary history of extant and fossil tinamous is published by Almeida et al. (2021).[354]
  • A mid-Holocene coprolite deposit attributed to the bush moa is reported from southern New Zealand by Wood et al. (2021), who evaluate the implications of this finding for the knowledge of the diet and ecology of this moa.[355]
  • A study comparing egg size and volume in extinct island emus and in mainland emu, aiming to determine egg size in relation to body size in island emus and their breeding strategy, is published by Hume & Robertson (2021).[356]
  • A study on the phylogenetic relationships of Brontornis burmeisteri is published by Agnolin (2021), who interprets this taxon as a member of Galloanserae.[357]
  • Reexamination of specimens of Omorhamphus storchii and Gastornis parisiensis alleged to preserve alveoli for teeth is published by Louchart et al. (2021), who reject claims of presence of teeth in gastornithids.[358]
  • A study on the morphology of the dromornithid brain, based on data from dromornithid endocast material spanning from the late Oligocene to the late Miocene, is published by Handley & Worthy (2021).[359]
  • A study on the bone histology, growth dynamics and life history of Genyornis newtoni is published by Chinsamy & Worthy (2021).[360]
  • A study on bone pathologies in specimens of Genyornis newtoni from the Lake Callabonna fossil deposit (Australia) is published by McInerney et al. (2021), who interpret the studied specimens as likely affected by osteomyelitis.[361]
  • Partial humerus of a coscoroba swan is described from the Upper Pleistocene Capellanía Formation (Argentina) by Vezzosi et al. (2021), who evaluate the implications of this finding for the knowledge of the knowledge of the dispersal of Neotropical swans during the Pleistocene.[362]
  • Partial skull of a pheasant-sized galliform land bird of uncertain phylogenetic placement is described from the latest Eocene or earliest Oligocene Jansen Creek Member of the Makah Formation (Washington, United States) by Mayr, Goedert & Rabenstein (2021), who report that this specimen preserves a foramen in the temporal region that enabled the vena profunda to enter the braincase, and interpret this foramen as a previously unnoticed cranial autapomorphy of galliforms.[363]
  • Redescription of Columba congi is published by Shen, Stidham & Li (2021).[364]
  • Description of new fossil material of Scandiavis mikkelseni from the Eocene Fur Formation (Denmark), providing new information on the brain anatomy of this bird, and a study on the phylogenetic affinities of Scandiavis is published by Heingård et al. (2021).[365]
  • Oswald et al. (2021) recover a nearly complete mitochondrial genome of the Haitian cave rail (Nesotrochis steganinos) from fossils, and find this bird to be a relative of the families Sarothruridae and Aptornithidae rather than a rallid as previously thought.[366]
  • A study reconstructing the wing musculature of the great auk and Mancalla is published by Watanabe, Field & Matsuoka (2021).[367]
  • New fossil material of plotopterids, resembling bones of Olympidytes (which was previously considered endemic to North America), is described from the Eocene to Oligocene Itanoura and Kakinoura formations (Japan) by Mori & Miyata (2021), who interpret these fossils as indicating that early diversity of this family in Japan was higher than previously thought.[368]
  • New fossil material of plotopterids is described from Washington by Mayr & Goedert (2021), who also revise the species Tonsala buchanani and transfer it to the genus Klallamornis.[369]
  • A carpometacarpus of a petrel, potentially representing a new genus and species, is described from the Miocene Gaiman Formation (Argentina) by Piro & Acosta Hospitaleche (2021).[370]
  • A study on the anatomy and pneumaticity of the skull and on the paleoneurology of the fossil banded penguin Spheniscus urbinai is published by Acosta Hospitaleche, Paulina-Carabajal & Yury-Yáñez (2021).[371]
  • A study on the new referred material of Dryornis pampeanus from the Pliocene Chapadmalal Formation (Argentina) and on the phylogenetic relationships of this species is published by Degrange et al. (2021), who interpret D. pampeanus as the largest cathartiform reported to date.[372]
  • The first unequivocal fossil material of teratorns from the Pleistocene of South America is described from four fossiliferous localities of Central Argentina by Cenizo et al. (2021), who evaluate the implications of these fossils for the knowledge of the evolutionary history of teratorns, and update the taxonomy of the family.[373]
  • A study on the feeding capabilities and behaviour of the Haast's eagle is published by van Heteren et al. (2021).[374]
  • Description of a partial skeleton of a member of the genus Septencoracias from the Eocene London Clay (United Kingdom), belonging or related to the species S. morsensis, and a study on the phylogenetic affinities and likely ecology of this bird is published by Mayr (2021).[375]
  • Redescription of the type specimen of Macrornis tanaupus from the Eocene Totland Bay Formation (Hampshire, United Kingdom) is published by Buffetaut & Angst (2021), who interpret this fossil as a partial tibiotarsus of a large terrestrial bird, possibly a phorusrhacid.[376]
  • A review of the knowledge of phorusrhacid skull anatomy is presented by Degrange (2021).[377]
  • Mayr, De Pietri & Scofield (2021) describe new fossil material of birds from the Eocene Nanjemoy Formation (Virginia, United States), including the first representatives of the families Messelasturidae, Psittacopedidae and Zygodactylidae from this formation.[378]
  • Two passerine specimens representing different size classes (thrush-sized and sylvid-sized), providing information on skeletal element proportions of the middle Miocene passerines, are described from the Miocene of Austria by Happ et al. (2021).[379]
  • A distal end of the left tarsometatarsus of a phasianid, which represents the first avian fossil record of Taiwan, is described from the Pleistocene Chiting Formation (Tainan, Taiwan) by Tsai & Mayr (2021).[380]
  • A study on the mechanics of egg incubation by giant extinct birds is published by Yen et al. (2021).[381]
  • Revision of the fossil material of birds from Miocene localities in the Iberian Peninsula is published by Sánchez-Marco (2021).[382]
  • Ramírez-Castro & Reynoso (2021) report fossil material of a shelduck and a ringed kingfisher from the Chapala-Zacoalco basins (Mexico), providing new information on the distribution of these birds in the Late Pleistocene.[383]
  • An assemblage of bird bones dated to late Pleistocene through middle Holocene is described from the Istykskaya cave (Pamir Mountains; Tajikistan) by Zelenkov, Sayfulloev, Shnaider (2021), who report the presence of bones of the water rail and a species of Podiceps (the black-necked grebe or the horned grebe) which were not recorded at such high altitudes before, and interpret this finding as evidence of milder environmental conditions in Eastern Pamir during late Quaternary.[384]
  • A study on the sensory systems in extant kiwis and the kākāpō and extinct moa and elephant birds is published by Johnston & Mitchell (2021).[385]
  • A study aiming to determine the impact of global climatic changes during the last 120,000 years on Afro-Palearctic migrant birds, as indicated by paleoclimate data and genomic-based estimates of effective population size, is published by Thorup et al. (2021).[386]

Pterosaurs

edit

New pterosaur taxa

edit
Name Novelty Status Authors Age Type locality Country Notes Images
Draigwenia[387] Gen. et comb. nov Valid Holgado Late Cretaceous (Cenomanian) Cambridge Greensand   United Kingdom An ornithocheiromorph. The type species is "Ornithocheirus" platystomus Seeley (1870).  

Kariridraco[388]

Gen. et sp. nov

Valid

Cerqueira et al.

Early Cretaceous (Aptian)

Romualdo Formation

  Brazil

A member of the subfamily Thalassodrominae. The type species is K. dianae.

 

Kunpengopterus antipollicatus[389]

Sp. nov

Valid

Zhou et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

  China

A wukongopterid, a species of Kunpengopterus.
 
Leptostomia[390] Gen. et sp. nov Valid Smith et al. Cretaceous (?AlbianCenomanian) Kem Kem   Morocco A small, long-beaked pterosaur, likely a member of Azhdarchoidea. The type species is L. begaaensis. Announced in 2020; the final version of the article naming it was published in 2021.  
Quetzalcoatlus lawsoni[391]

Sp. nov

Valid

Andres and Langston Jr.

Late Cretaceous (Maastrichtian)

Javelina Formation

  United States
(  Texas)

A quetzalcoatline azhdarchid, a species of Quetzalcoatlus.
 

Sinomacrops[392]

Gen. et sp. nov

Valid

Wei et al.

MiddleLate Jurassic (Callovian–Oxfordian)

Tiaojishan Formation

  China

An anurognathid. The type species is S. bondei.

 

Tacuadactylus[393]

Gen. et sp. nov

Valid

Soto et al.

Late Jurassic (Kimmeridgian)

Tacuarembó Formation

  Uruguay

A gnathosaurine ctenochasmatid. The type species is T. luciae

Thapunngaka[394]

Gen. et sp. nov

Valid

Richards, Stumkat & Salisbury

Early Cretaceous (Albian)

Toolebuc Formation

  Australia

A member of the family Anhangueridae. The type species is T. shawi.

 
Wellnhopterus[391]

Gen. et sp. nov

Valid

Andres and Langston Jr.

Late Cretaceous (Maastrichtian)

Javelina Formation

  United States
(  Texas)

An azhdarchid. The type species is W. brevirostris. Part of the type specimen was independently made the type specimen of the species "Javelinadactylus sagebieli" the same year; however, the article naming that species was subsequently retracted.[395]

 

Research

edit
  • A study aiming to determine the nature and average number of osteological characters used to diagnose pterosaur species, as well as aiming to estimate how many pterosaur taxa are still unknown, is published by Fernandes, Nunes & Costa (2021).[396]
  • A study on the phylogenetic affinities of pterosaurs is published by Baron (2021).[397]
  • A study on the flight abilities of hatchling pterosaurs is published by Naish, Witton & Martin-Silverstone (2021).[398]
  • A study on size range of pterosaurs from the Cretaceous Kem Kem Group (Morocco) and on the bone histology of small pterosaur specimens from these strata is published by Smith et al. (2021), who interpret their findings as indicating that in the Cretaceous period the niches previously occupied by small pterosaurs were increasingly occupied by early ontogenetic stages of large pterosaurs rather than by birds.[399]
  • New information on the skeletal anatomy of Austriadraco dallavecchiai is provided by Dalla Vecchia (2021).[400]
  • Fossil material of a rhamphorhynchine pterosaur is described from the Upper Jurassic Cerro Campamento Formation (Chile) by Alarcón-Muñoz et al. (2021), representing the first record of this group from Gondwana reported to date.[401]
  • An early juvenile or late hatchling specimen of Kunpengopterus sinensis, providing new information on the skeletal changes during ontogeny in wukongopterids, is described from the Tiaojishan Formation (China) by Jiang et al. (2021).[402]
  • Pêgas, Costa & Kellner (2021) attempt to reconstruct the adductor musculature of the pterodactyloid skull, and to estimate bite force for nine pterodactyloid species.[403]
  • A study on soft tissues of a pterodactyloid specimen from the Upper Jurassic Solnhofen Limestones (Germany) is published by Pittman et al. (2021), who interpret their findings as providing evidence of the presence of a biological wing root fairing in pterosaurs.[404]
  • A well-preserved large skull of Ctenochasma elegans is described from the Upper Jurassic Painten Formation (Germany) by Bennett (2021).[405]
  • Partial mandible of Forfexopterus is described from the Early Cretaceous Jehol Biota (China) by Zhou, Wang & Wang (2021), who report evidence of tooth wear in this specimen, making it the first known record of tooth-tooth occlusion in ctenochasmatids, and evaluate its implications for the knowledge of the feeding strategy of ctenochasmatids.[406]
  • Fragment of an ulna of a pteranodontid pterosaur is described from the Campanian locality Polunino 2 (Volgograd Oblast, Russia) by Averianov & Yarkov (2021), representing the first record of the family Pteranodontidae from the Lower Volga region reported so far.[407]
  • A review of putative boreopterid pterosaurs from the South Korea was published by Yun (2021), who concluded that they could not be confidently referred to Boreopteridae.[408]
  • New specimen of Istiodactylus latidens, probably coming from the Lower Cretaceous Vectis Formation (United Kingdom) and possibly representing the missing jaws of the holotype of this species, is described by Averianov et al. (2021).[409]
  • Bantim et al. (2021) describe a pteranodontoid pterosaur with anhanguerid affinities from Aptian-age deposits of the Romualdo Formation (Brazil).[410]
  • A new pterodactyloid mandible from the Valanginian of Germany is described by Abel et al. (2021), representing the oldest anhanguerian known to date.[411]
  • A study on the variation of pneumaticity patterns in the vertebral column of an anhanguerid specimen from the Romualdo Formation is published by Buchmann et al. (2021).[412]
  • Solonin et al. (2021) describe teeth from the Upper Cretaceous (Santonian) Dmitrov Formation (Ryazan Oblast, Russia), referrable to ornithocheirid pterosaurs, leading to the first occurrence of them in said formation.[413]
  • A well-preserved, almost complete and articulated new specimen of Tupandactylus navigans, associated with soft tissue remains, is described from the Lower Cretaceous Crato Formation (Brazil) by Beccari et al. (2021).[414]
  • New specimen of Sinopterus dongi, improving knowledge on the anatomy of this pterosaur, is described from the Lower Cretaceous Jiufotang Formation (China) by Shen et al. (2021).[415]
  • Partial femur of a large-sized dsungaripteroid pterosaur is described from the Upper Jurassic (Kimmeridgian) Praia da Amoreira–Porto Novo Formation (Portugal) by Bertozzo et al. (2021), representing the second confirmed report of a dsungaripteroid from the Jurassic, and the first record of this group from the Iberian Peninsula reported to date.[416]
  • Postcranial elements referrable to Lonchognathosaurus, confirming the validity of the genus and providing new information on the anatomy of this pterosaur, are described from the Lower Cretaceous Lianmuqin Formation (China) by Augustin et al. (2021).[417]
  • 114 small pterosaur footprints, possibly produced by pterosaurs belonging to the species Noripterus complicidens, are described from the Lower Cretaceous Shengjinkou Formation (China) by Li, Wang & Jiang (2021), who name a new ichnospecies Pteraichnus wuerhoensis.[418]
  • New fossil material of pterosaurs is described from the Lower Cretaceous Lianmuqin Formation (China) by Augustin et al. (2021), who interpret these fossils as probable evidence of the presence of a second dsungaripterid taxon (distinct from Lonchognathosaurus) in this formation.[419]
  • New fossil material of dsungaripterids is described from the Lower Cretaceous Hutubei Formation (China) by Augustin et al. (2021), representing the first record of pterosaurs from this formation reported to date, and one of the oldest records of dsungaripterids from the Tugulu Group.[420]
  • A study on the internal architecture and mechanical properties of a hyper-elongate cervical vertebra of an azhdarchid pterosaur from the Kem Kem Group (Morocco) is published by Williams et al. (2021).[421]
  • Fragment of the wing metacarpal of an azhdarchid is described from the Campanian of the Orenburg Oblast (Russia) by Averianov, Zverkov & Nikiforov (2021), representing the first record of a pterosaur from the Late Cretaceous of Southern Urals reported to date.[422]
  • A study on the anatomy and phylogenetic affinities of Aerotitan sudamericanus is published by Pêgas et al. (2021; final version published in 2022), who name the new clades Azhdarchomorpha and Alanqidae.[423]
  • A large wing bone (possibly an ulna) of a pterosaur with an estimated wingspan comparable with the holotype specimen of Cryodrakon boreas is described from the Campanian Kaiparowits Formation (Utah, United States) by Farke (2021).[424]
  • Studies on the paleoenvironment, functional morphology, and the phylogenetic affinities of Quetzalcoatlus, which also focuses on the phylogeny of pterosaurs in general and names the new clades Azhdarchiformes, Nyctosauromorpha and Ornithocheiriformes are published by Lehman et al. (2021),[425] Padian et al. (2021)[426] and Andres (2021).[427]

Other archosaurs

edit

Research

edit

General research

edit
  • A study on the relationship between full potential joint mobility and the poses used during locomotion in extant American alligator and helmeted guineafowl, evaluating its implications for reconstructions of locomotion of extinct archosaurs, is published by Manafzadeh, Kambic, and Gatesy (2021).[432]
  • A study on the femoral shape variation and on the relationship between femoral morphology and locomotor habits in early archosaurs and non-archosaur archosauriforms is published by Pintore et al. (2021).[433]
  • A study estimating moment arms for major pelvic limb muscles in extant and fossil archosaurs, aiming to investigate the idea that bird-line archosaurs switched from hip-based to knee-based locomotion between Archosauria (especially Neotheropoda) and Aves, is published by Allen, Kilbourne & Hutchinson (2021).[434]
  • A study aiming to determine how ontogenetic changes in skeletal anatomy influence muscle size, leverage, orientation, and locomotor function during the development of flight in extant chukar partridge is published by Heers et al. (2021), who evaluate the implications of their findings on current knowledge of how extinct winged theropods might have achieved bird-like behaviors before acquiring fully bird-like anatomies.[435]
  • A study on jumping mechanics and performance in extant elegant crested tinamou, and on its implications for inferences of jumping abilities in extinct animals such as dromaeosaurid dinosaurs, is published by Bishop et al. (2021).[436]
  • A study on the morphological diversity and evolution of the semicircular canals of the inner ear in extant and fossil archosaurs is published by Bronzati et al. (2021).[437]
  • A study on the evolution of eggshell thickness in non-avian dinosaurs and birds is published by Legendre & Clarke (2021).[438]
  • A study on the evolution of birdlike locomotor abilities and hearing acuity, as indicated by the anatomy of the inner ear in extant and fossil reptiles and birds, is published by Hanson et al. (2021);[439] the conclusions of the study are subsequently contested by David, Bronzati & Benson (2022).[440][441]
  • A study assessing the accuracy of bite force estimates in extinct archosaurs and mammals is published by Sakamoto (2021).[442]
  • A study on the composition of the assemblage of isolated archosaur (dinosaur and crocodyliform) teeth and osteoderms from the Upper Cretaceous Cerro Fortaleza Formation (Argentina), and on its implications for the knowledge of the archosaur biodiversity in southern Patagonia during the Late Cretaceous, is published by Paulina-Carabajal et al. (2021).[443]
  • A study on evolution of the expression of carotenoids in skin and other integumentary structures of archosaurs is published by Davis & Clarke (2021).[444]
  • A study on the ossification patterns of the respiratory turbinate in extant birds, and on their implications for the identification of the positions and form of possible osteological correlates of the respiratory turbinate in non-avian dinosaurs, is published by Tada & Tsuihiji (2021).[445]
  • Revision of the Mesozoic and Cenozoic record of large, unwebbed bird and bird-like footprints is published by Lockley, Abbassi & Helm (2021).[446]

References

edit
  1. ^ Blanco A (2021). "Importance of the postcranial skeleton in eusuchian phylogeny: Reassessing the systematics of allodaposuchid crocodylians". PLOS ONE. 16 (6): e0251900. Bibcode:2021PLoSO..1651900B. doi:10.1371/journal.pone.0251900. PMC 8189472. PMID 34106925.
  2. ^ Yoshida J, Hori A, Kobayashi Y, Ryan MJ, Takakuwa Y, Hasegawa Y (2021). "A new goniopholidid from the Upper Jurassic Morrison Formation, USA: novel insight into aquatic adaptation toward modern crocodylians". Royal Society Open Science. 8 (12): Article ID 210320. Bibcode:2021RSOS....810320Y. doi:10.1098/rsos.210320. PMC 8652276. PMID 34909210.
  3. ^ Nicholl CS, Hunt ES, Ouarhache D, Mannion PD (2021). "A second peirosaurid crocodyliform from the Mid-Cretaceous Kem Kem Group of Morocco and the diversity of Gondwanan notosuchians outside South America". Royal Society Open Science. 8 (10): Article ID 211254. Bibcode:2021RSOS....811254N. doi:10.1098/rsos.211254. PMC 8511751. PMID 34659786.
  4. ^ Darlim G, Montefeltro FC, Langer MC (2021). "3D skull modelling and description of a new baurusuchid (Crocodyliformes, Mesoeucrocodylia) from the Late Cretaceous (Bauru Basin) of Brazil" (PDF). Journal of Anatomy. 239 (3): 622–662. doi:10.1111/joa.13442. PMC 8349455. PMID 33870512. S2CID 233300736.
  5. ^ Salih KO, Evans DC, Bussert R, Klein N, Müeller J (2021). "Brachiosuchus kababishensis, a new long-snouted dyrosaurid (Mesoeucrocodylia) from the Late Cretaceous of north central Sudan". Historical Biology. 34 (5): 821–840. doi:10.1080/08912963.2021.1947513. S2CID 237801202.
  6. ^ Novas FE, Agnolin FL, Lio GL, Rozadilla S, Suárez M, de la Cruz R, Carvalho IS, Rubilar-Rogers D, Isasi MP (2021). "New transitional fossil from late Jurassic of Chile sheds light on the origin of modern crocodiles". Scientific Reports. 11 (1): Article number 14960. doi:10.1038/s41598-021-93994-z. PMC 8298593. PMID 34294766.
  7. ^ Ruiz JV, Bronzati M, Ferreira GS, Martins KC, Queiroz MV, Langer MC, Montefeltro FC (2021). "A new species of Caipirasuchus (Notosuchia, Sphagesauridae) from the Late Cretaceous of Brazil and the evolutionary history of Sphagesauria" (PDF). Journal of Systematic Palaeontology. 19 (4): 265–287. Bibcode:2021JSPal..19..265R. doi:10.1080/14772019.2021.1888815. ISSN 1477-2019. S2CID 235172623.
  8. ^ Stocker MR, Brochu CA, Kirk EC (2021). "A new caimanine alligatorid from the Middle Eocene of Southwest Texas and implications for spatial and temporal shifts in Paleogene crocodyliform diversity". PeerJ. 9: e10665. doi:10.7717/peerj.10665. PMC 7812925. PMID 33520458.
  9. ^ Pinheiro AE, De Douza LG, Bandeira KL, Brum AS, Pereira PV, De Castro LO, Ramos RR, Simbras FM (2021). "The first notosuchian crocodyliform from the Araçatuba Formation (Bauru Group, Paraná Basin), and diversification of sphagesaurians". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20201591. doi:10.1590/0001-3765202120201591. PMID 34161450. S2CID 235626708.
  10. ^ Sachs S, Young MT, Abel P, Mallison H (2021). "A new species of Cricosaurus (Thalattosuchia, Metriorhynchidae) based upon a remarkably well-preserved skeleton from the Upper Jurassic of Germany". Palaeontologia Electronica. 24 (2): Article number 24.2.a24. doi:10.26879/928.
  11. ^ Yanina Herrera; Marta S. Fernández; Verónica V. Vennari (2020). "Cricosaurus (Thalattosuchia, Metriorhynchidae) survival across the J/K boundary in the High Andes (Mendoza Province, Argentina)". Cretaceous Research. 118: Article 104673. doi:10.1016/j.cretres.2020.104673. hdl:11336/142931. S2CID 225149236.
  12. ^ Herrera Y, Aiglstorfer M, Bronzati M (2021). "A new species of Cricosaurus (Thalattosuchia: Crocodylomorpha) from southern Germany: the first three-dimensionally preserved Cricosaurus skull from the Solnhofen Archipelago". Journal of Systematic Palaeontology. 19 (2): 145–167. Bibcode:2021JSPal..19..145H. doi:10.1080/14772019.2021.1883138. S2CID 233194201.
  13. ^ Shan HY, Wu XC, Sato T, Cheng YN, Rufolo S (2021). "A new alligatoroid (Eusuchia, Crocodylia) from the Eocene of China and its implications for the relationships of Orientalosuchina". Journal of Paleontology. 95 (6): 1321–1339. Bibcode:2021JPal...95.1321S. doi:10.1017/jpa.2021.69. S2CID 238650207.
  14. ^ Marinho TS, Martinelli AG, Basilici G, Soares MV, Marconato A, Ribeiro LC, Iori FV (2021). "First Upper Cretaceous notosuchians (Crocodyliformes) from the Uberaba Formation (Bauru Group), southeastern Brazil: enhancing crocodyliform diversity". Cretaceous Research. 129: Article 105000. doi:10.1016/j.cretres.2021.105000. ISSN 0195-6671. S2CID 238725546.
  15. ^ Tolchard F, Smith RM, Arcucci A, Mocke H, Choiniere JN (2021). "A new 'rauisuchian' archosaur from the Middle Triassic Omingonde Formation (Karoo Supergroup) of Namibia". Journal of Systematic Palaeontology. 19 (8): 595–631. Bibcode:2021JSPal..19..595T. doi:10.1080/14772019.2021.1931501. S2CID 237402241.
  16. ^ Ristevski J, Price GJ, Weisbecker V, Salisbury SW (2021). "First record of a tomistomine crocodylian from Australia". Scientific Reports. 11 (1): Article number 12158. Bibcode:2021NatSR..1112158R. doi:10.1038/s41598-021-91717-y. PMC 8190066. PMID 34108569.
  17. ^ Czepiński Ł, Dróżdż D, Szczygielski T, Tałanda M, Pawlak W, Lewczuk A, et al. (2021). "An Upper Triassic Terrestrial Vertebrate Assemblage from the Forgotten Kocury Locality (Poland) with a New Aetosaur Taxon". Journal of Vertebrate Paleontology. 41 (1): e1898977. Bibcode:2021JVPal..41E8977C. doi:10.1080/02724634.2021.1898977. S2CID 233522981.
  18. ^ Bravo GG, Pol D, García-López DA (2021). "A new sebecid mesoeucrocodylian from the Paleocene of northwestern Argentina". Journal of Vertebrate Paleontology. 41 (3): e1979020. Bibcode:2021JVPal..41E9020B. doi:10.1080/02724634.2021.1979020. S2CID 240087442.
  19. ^ Rummy P, Wu XC, Clark JM, Zhao Q, Jin CZ, Shibata M, Jin F, Xu X (2021). "A new paralligatorid (Crocodyliformes, Neosuchia) from the middle Cretaceous of Jilin Province, northeastern China". Cretaceous Research. 129: Article 105018. doi:10.1016/j.cretres.2021.105018. S2CID 239651801.
  20. ^ Stubbs TL, Pierce SE, Elsler A, Anderson PS, Rayfield EJ, Benton MJ (March 2021). "Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation". Proceedings. Biological Sciences. 288 (1947): 20210069. doi:10.1098/rspb.2021.0069. PMC 8059953. PMID 33757349. S2CID 232326789.
  21. ^ Felice RN, Pol D, Goswami A (2021). "Complex macroevolutionary dynamics underly the evolution of the crocodyliform skull". Proceedings of the Royal Society B: Biological Sciences. 288 (1954): Article ID 20210919. doi:10.1098/rspb.2021.0919. PMC 8277476. PMID 34256005.
  22. ^ Dollman KN, Clark JM, Viglietti PA, Browning C, Choiniere JN (2021). "Revised anatomy, taxonomy and biostratigraphy of Notochampsa istedana Broom, 1904, a Lower Jurassic crocodyliform from the Clarens Formation (Stormberg Group), and its implications for early crocodyliform phylogeny". Journal of Systematic Palaeontology. 19 (9): 651–675. Bibcode:2021JSPal..19..651D. doi:10.1080/14772019.2021.1948926. S2CID 238241175.
  23. ^ Melstrom KM, Turner AH, Irmis RB (2022). "Reevaluation of the cranial osteology and phylogenetic position of the early crocodyliform Eopneumatosuchus colberti, with an emphasis on its endocranial anatomy". The Anatomical Record. 305 (10): 2557–2582. doi:10.1002/ar.24777. PMID 34679248. S2CID 239473004.
  24. ^ Gignac PM, Smaers JB, O'Brien HD (2022). "Unexpected bite-force conservatism as a stable performance foundation across mesoeucrocodylian historical diversity". The Anatomical Record. 305 (10): 2823–2837. doi:10.1002/ar.24768. PMID 34555273. S2CID 237615910.
  25. ^ Klock C, Leuzinger L, Santucci RM, Martinelli AG, Marconato A, Marinho TS, Luz Z, Vennemann T (2021). "A bone to pick: stable isotope compositions as tracers of food sources and paleoecology for notosuchians in the Brazilian Upper Cretaceous Bauru Group". Cretaceous Research. 131: Article 105113. doi:10.1016/j.cretres.2021.105113. S2CID 263326282.
  26. ^ de Oliveira FA, Santucci RM, de Oliveira CE, de Andrade MB (2021). "Morphological and compositional analyses of coprolites from the Upper Cretaceous Bauru Group reveal dietary habits of notosuchian fauna". Lethaia. 54 (5): 664–686. Bibcode:2021Letha..54..664D. doi:10.1111/let.12431. S2CID 236299609.
  27. ^ Figueiredo RG, Kellner AW (2021). "Morphological variation in the dentition of Uruguaysuchidae (Crocodyliformes: Notosuchia)". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20201594. doi:10.1590/0001-3765202120201594. PMID 34406219. S2CID 237197248.
  28. ^ Fernández Dumont ML, Pereyra ME, Bona P, Apesteguía S (2021). "New data on the palaeosteohistology and growth dynamic of the notosuchian Araripesuchus Price, 1959". Lethaia. 54 (4): 578–590. Bibcode:2021Letha..54..578F. doi:10.1111/let.12423.
  29. ^ Nieto MN, Degrange FJ, Sellers KC, Pol D, Holliday CM (2022). "Biomechanical performance of the cranio-mandibular complex of the small notosuchian Araripesuchus gomesii (Notosuchia, Uruguaysuchidae)". The Anatomical Record. 305 (10): 2695–2707. doi:10.1002/ar.24697. PMID 34132040. S2CID 235450781.
  30. ^ Darlim G, Carvalho IS, Tavares SA, Langer MC (2021). "A new Pissarrachampsinae specimen from the Bauru Basin, Brazil, adds data to the understanding of the Baurusuchidae (Mesoeucrocodylia, Notosuchia) distribution in the Late Cretaceous of South America". Cretaceous Research. 128: Article 104969. Bibcode:2021CrRes.12804969D. doi:10.1016/j.cretres.2021.104969. ISSN 0195-6671.
  31. ^ dos Santos DM, Santucci RM, de Oliveira CE, de Andrade MB (2022). "A baurusuchid yearling (Mesoeucrocodylia, Crocodyliformes), from the Adamantina Formation, Bauru Group, Upper Cretaceous of Brazil". Historical Biology. 34 (11): 2137–2151. Bibcode:2022HBio...34.2137M. doi:10.1080/08912963.2021.2001807. S2CID 245345923.
  32. ^ Marchetti I, Delcourt R, Tavares SA, Canalli JF, Nascimento PM, Ricardi-Branco F (2021). "Morphological and paleohistological description of a new Baurusuchidae specimen from the Adamantina Formation, Upper Cretaceous of Brazil". Journal of South American Earth Sciences. 114: Article 103693. doi:10.1016/j.jsames.2021.103693. S2CID 245546220.
  33. ^ Pochat-Cottilloux Y, Martin JE, Jouve S, Perrichon G, Adrien J, Salaviale C, de Muizon C, Cespedes R, Amiot R (2022). "The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians" (PDF). The Anatomical Record. 305 (10): 2708–2728. doi:10.1002/ar.24826. PMID 34825786. S2CID 244660946.
  34. ^ Spindler F, Lauer R, Tischlinger H, Mäuser M (2021). "The integument of pelagic crocodylomorphs (Thalattosuchia: Metriorhynchidae)". Palaeontologia Electronica. 24 (2): Article number 24.2.a25. doi:10.26879/1099.
  35. ^ Cowgill T, Young MT, Schwab JA, Walsh S, Witmer LM, Herrera Y, Dollman KN, Choiniere JN, Brusatte SL (2022). "Paranasal sinus system and upper respiratory tract evolution in Mesozoic pelagic crocodylomorphs". The Anatomical Record. 305 (10): 2583–2603. doi:10.1002/ar.24727. PMID 34398508. S2CID 237093183.
  36. ^ Wilberg EW, Beyl AR, Pierce SE, Turner AH (2022). "Cranial and endocranial anatomy of a three-dimensionally preserved teleosauroid thalattosuchian skull". The Anatomical Record. 305 (10): 2620–2653. doi:10.1002/ar.24704. PMID 34259385. S2CID 235823836.
  37. ^ Bowman CI, Young MT, Schwab JA, Walsh S, Witmer LM, Herrera Y, Choiniere J, Dollman KN, Brusatte SL (2022). "Rostral neurovasculature indicates sensory trade-offs in Mesozoic pelagic crocodylomorphs". The Anatomical Record. 305 (10): 2654–2669. doi:10.1002/ar.24733. PMID 34428341. S2CID 237292970.
  38. ^ Madzia D, Sachs S, Young MT, Lukeneder A, Skupien P (2021). "Evidence of two lineages of metriorhynchid crocodylomorphs in the Lower Cretaceous of the Czech Republic". Acta Palaeontologica Polonica. 66 (2): 357–367. doi:10.4202/app.00801.2020. hdl:10084/145230. S2CID 235247523.
  39. ^ Schwab JA, Young MT, Herrera Y, Witmer LM, Walsh SA, Katsamenis OL, Brusatte SL (2021). "The braincase and inner ear of 'Metriorhynchus' cf. 'M.' brachyrhynchus – implications for aquatic sensory adaptations in crocodylomorphs" (PDF). Journal of Vertebrate Paleontology. 41 (1): e1912062. Bibcode:2021JVPal..41E2062S. doi:10.1080/02724634.2021.1912062. S2CID 236276110.
  40. ^ Fernández MS, Herrera Y (2022). "Active airflow of the paranasal sinuses in extinct crocodyliforms: Evidence from a natural cast of the thalattosuchian Dakosaurus andiniensis". The Anatomical Record. 305 (10): 2604–2619. doi:10.1002/ar.24678. hdl:11336/136755. PMID 34125496. S2CID 235425386.
  41. ^ Faure-Brac MG, Amiot R, de Muizon C, Cubo J, Lécuyer C (2022). "Combined paleohistological and isotopic inferences of thermometabolism in extinct Neosuchia, using Goniopholis and Dyrosaurus (Pseudosuchia: Crocodylomorpha) as case studies". Paleobiology. 48 (2): 302–323. Bibcode:2022Pbio...48..302F. doi:10.1017/pab.2021.34.
  42. ^ Jouve S (2021). "Differential diversification through the K-Pg boundary, and post-crisis opportunism in longirostrine crocodyliforms". Gondwana Research. 99: 110–130. Bibcode:2021GondR..99..110J. doi:10.1016/j.gr.2021.06.020.
  43. ^ Pellegrini RA, Callahan WR, Hastings AK, Parris DC, McCauley JD (2021). "Skeletochronology and Paleohistology of Hyposaurus rogersii (Crocodyliformes, Dyrosauridae) from the Early Paleogene of New Jersey, USA". Animals. 11 (11): Article 3067. doi:10.3390/ani11113067. PMC 8614569. PMID 34827799.
  44. ^ Erb A, Turner AH (2021). "Braincase anatomy of the Paleocene crocodyliform Rhabdognathus revealed through high resolution computed tomography". PeerJ. 9: e11253. doi:10.7717/peerj.11253. PMC 8103917. PMID 33986990.
  45. ^ Scavezzoni I, Fischer V (2021). "The postcranial skeleton of Cerrejonisuchus improcerus (Crocodyliformes: Dyrosauridae) and the unusual anatomy of dyrosaurids". PeerJ. 9: e11222. doi:10.7717/peerj.11222. PMC 8117932. PMID 34026348.
  46. ^ Drumheller, S. K.; Adams, T. L.; Maddox, H.; Noto, C. R. (2021). Expanded Sampling Across Ontogeny in Deltasuchus motherali (Neosuchia, Crocodyliformes). Revealing Ecomorphological Niche Partitioning and Appalachian Endemism in Cenomanian Crocodyliforms. Elements of Paleontology. pp. 1–67. Bibcode:2021esao.book.....D. doi:10.1017/9781009042024. ISBN 9781009042024. S2CID 235524076.
  47. ^ Narváez I, de Celis A, Escaso F, De Jesús SM, Pérez-García A, Rodríguez A, Ortega F (2021). "Redescription and phylogenetic placement of the Spanish middle Eocene eusuchian Duerosuchus piscator (Crocodylia, Planocraniidae)". Journal of Vertebrate Paleontology. 41 (3): e1974868. Bibcode:2021JVPal..41E4868N. doi:10.1080/02724634.2021.1974868. S2CID 242094589.
  48. ^ Rio JP, Mannion PD (2021). "Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem". PeerJ. 9: e12094. doi:10.7717/peerj.12094. PMC 8428266. PMID 34567843.
  49. ^ Mohler BF, McDonald AT, Wolfe DG (2021). "First remains of the enormous alligatoroid Deinosuchus from the Upper Cretaceous Menefee Formation, New Mexico". PeerJ. 9: e11302. doi:10.7717/peerj.11302. PMC 8080887. PMID 33981505.
  50. ^ Kuzmin IT, Zvonok EA (2021). "Crocodylian assemblage from the middle Eocene Ikovo locality (Lugansk Province, Ukraine), with a discussion of the fossil record and geographic origins of crocodyliform fauna in the Paleogene of Europe". Geobios. 65: 7–27. Bibcode:2021Geobi..65....7K. doi:10.1016/j.geobios.2021.02.002. S2CID 233596947.
  51. ^ Walter J, Darlim G, Massonne T, Aase A, Frey E, Rabi M (2021). "On the origin of Caimaninae: insights from new fossils of Tsoabichi greenriverensis and a review of the evidence". Historical Biology. 34 (4): 580–595. doi:10.1080/08912963.2021.1938563. S2CID 238723638.
  52. ^ Cidade GM, Rincón AD (2021). "The first occurrence of Acresuchus (Alligatoroidea, Caimaninae) from the Urumaco Formation of Venezuela and the late Miocene crocodylian fauna of northern South America". Journal of South American Earth Sciences. 110: Article 103344. Bibcode:2021JSAES.11003344C. doi:10.1016/j.jsames.2021.103344.
  53. ^ Iijima M, Takai M, Nishioka Y, Thaung-Htike, Zin-Maung-Maung-Thein, Egi N, et al. (2021). "Taxonomic overview of Neogene crocodylians in Myanmar". Journal of Vertebrate Paleontology. 40 (6): e1879100. doi:10.1080/02724634.2021.1879100. S2CID 233619370.
  54. ^ Nicholl CS, Rio JP, Mannion PD, Delfino M (2021). "A re-examination of the anatomy and systematics of the tomistomine crocodylians from the Miocene of Italy and Malta". Journal of Systematic Palaeontology. 18 (22): 1853–1889. doi:10.1080/14772019.2020.1855603. S2CID 231636898.
  55. ^ Hekkala E, Gatesy J, Narechania A, Meredith R, Russello M, Aardema ML, et al. (2021). "Paleogenomics illuminates the evolutionary history of the extinct Holocene "horned" crocodile of Madagascar, Voay robustus". Communications Biology. 4 (1): Article number 505. doi:10.1038/s42003-021-02017-0. PMC 8079395. PMID 33907305.
  56. ^ Azzarà B, Boschian G, Brochu CA, Delfino M, Dawid A, Iurino DA, Kimambo JS, Manzi G, Masao FT, Menconero S, Njau JK, Cherin M (2021). "A new cranium of Crocodylus anthropophagus from olduvai Gorge, northern Tanzania". Rivista Italiana di Paleontologia e Stratigrafia. 127 (2): 275–295. doi:10.13130/2039-4942/15771. S2CID 237962496.
  57. ^ Paes Neto VD, Desojo JB, Brust AC, Ribeiro AM, Schultz CL, Soares MB (2021). "The first braincase of the basal aetosaur Aetosauroides scagliai (Archosauria: Pseudosuchia) from the Upper Triassic of Brazil". Journal of Vertebrate Paleontology. 41 (2): e1928681. Bibcode:2021JVPal..41E8681P. doi:10.1080/02724634.2021.1928681. S2CID 237518035.
  58. ^ Paes Neto VD, Desojo JB, Brust AC, Ribeiro AM, Schultz CL, Soares MB (2021). "Skull osteology of Aetosauroides scagliai Casamiquela, 1960 (Archosauria: Aetosauria) from the Late Triassic of Brazil: New insights into the paleobiology of aetosaurs". Palaeontologia Electronica. 24 (3): Article number 24.3.a33. doi:10.26879/1120.
  59. ^ Paes-Neto VD, Desojo JB, Brust AC, Schultz CL, Da-Rosa ÁA, Soares MB (2021). "Intraspecific variation in the axial skeleton of Aetosauroides scagliai (Archosauria: Aetosauria) and its implications for the aetosaur diversity of the Late Triassic of Brazil". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20201239. doi:10.1590/0001-3765202120201239. hdl:11336/150258. PMID 34468486. S2CID 237372648.
  60. ^ Heckert AB, Martínez RN, Celeskey MD (2021). "Anatomical details of Aetosauria (Archosauria:Pseudosuchia) as revealed by an articulated posterior skeleton from the Upper Triassic Ischigualasto Formation, San Juan Province, Argentina". Ameghiniana. 58 (6): 464–484. doi:10.5710/AMGH.05.09.2021.3426. S2CID 239751891.
  61. ^ Drymala SM, Bader K, Parker WG (2021). "Bite marks on an aetosaur (Archosauria, Suchia) osteoderm: assessing Late Triassic predator-prey ecology through ichnology and tooth morphology". PALAIOS. 36 (1): 28–37. Bibcode:2021Palai..36...28D. doi:10.2110/palo.2020.043. S2CID 231857816.
  62. ^ Reyes WA, Parker WG, Marsh AD (2021). "Cranial Anatomy and Dentition of the Aetosaur Typothorax coccinarum (Archosauria: Pseudosuchia) from the Upper Triassic (Revueltian–Mid Norian) Chinle Formation of Arizona". Journal of Vertebrate Paleontology. 40 (6): e1876080. doi:10.1080/02724634.2020.1876080. S2CID 233616969.
  63. ^ Taborda JR, Desojo JB, Dvorkin EN (2021). "Biomechanical skull analysis of an aetosaur Neoaetosauroides engaeus using finite element analysis". Ameghiniana. 58 (5): 401–415. doi:10.5710/AMGH.23.07.2021.3412. S2CID 238018422.
  64. ^ von Baczko MB, Desojo JB, Gower DJ, Ridgely R, Bona P, Witmer LM (2022). "New digital braincase endocasts of two species of Desmatosuchus and neurocranial diversity within Aetosauria (Archosauria: Pseudosuchia)". The Anatomical Record. 305 (10): 2415–2434. doi:10.1002/ar.24798. hdl:11336/152847. PMID 34662509. S2CID 239026663.
  65. ^ Stockdale MT, Benton MJ (January 2021). "Environmental drivers of body size evolution in crocodile-line archosaurs". Communications Biology. 4 (1): 38. doi:10.1038/s42003-020-01561-5. PMC 7790829. PMID 33414557.
  66. ^ Benson RB, Godoy P, Bronzati M, Butler RJ, Gearty W (2022). "Reconstructed evolutionary patterns for crocodile-line archosaurs demonstrate impact of failure to log-transform body size data". Communications Biology. 5 (1): Article 171. doi:10.1038/s42003-022-03071-y. PMC 8881462. PMID 35217775.
  67. ^ Stockdale MT, Benton MJ (2022). "Reply to: 'Reconstructed evolutionary patterns from crocodile-line archosaurs demonstrate the impact of failure to log-transform body size data'". Communications Biology. 5 (1): Article 170. doi:10.1038/s42003-022-03072-x. PMC 8881626. PMID 35217770.
  68. ^ Milner AR, Irmis RB, Lockley MG, Klein H, Slauf D, Romillio A (2021). "First report of "Chirotherium" lulli from the Upper Triassic Chinle Formation of San Juan County, Utah". New Mexico Museum of Natural History and Science Bulletin. 82: 275–284.
  69. ^ Parker WG, Nesbitt SJ, Irmis RB, Martz JW, Marsh AD, Brown MA, Stocker MR, Werning S (2022). "Osteology and relationships of Revueltosaurus callenderi (Archosauria: Suchia) from the Upper Triassic (Norian) Chinle Formation of Petrified Forest National Park, Arizona, United States". The Anatomical Record. 305 (10): 2353–2414. doi:10.1002/ar.24757. PMC 9544919. PMID 34585850.
  70. ^ Bestwick J, Jones AS, Nesbitt SJ, Lautenschlager S, Rayfield EJ, Cuff AR, Button DJ, Barrett PM, Porro LB, Butler RJ (2022). "Cranial functional morphology of the pseudosuchian Effigia and implications for its ecological role in the Triassic". The Anatomical Record. 305 (10): 2435–2462. doi:10.1002/ar.24827. PMID 34841701. S2CID 244713889.
  71. ^ Nicholas R. Longrich; Xabier Pereda Suberbiola; R. Alexander Pyron; Nour-Eddine Jalil (2020). "The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography". Cretaceous Research. 120: Article 104678. doi:10.1016/j.cretres.2020.104678. S2CID 228807024.
  72. ^ Rubilar-Rogers D, Vargas AO, Riga BG, Soto-Acuña S, Alarcón-Muñoz J, Iriarte-Díaz J, Arévalo C, Gutstein CS (2021). "Arackar licanantay gen. et sp. nov. a new lithostrotian (Dinosauria, Sauropoda) from the Upper Cretaceous of the Atacama Region, northern Chile". Cretaceous Research. 124: Article 104802. Bibcode:2021CrRes.12404802R. doi:10.1016/j.cretres.2021.104802. S2CID 233780252.
  73. ^ Silva Junior JC, Martinelli AG, Iori FV, Marinho TS, Hechenleitner EM, Langer MC (2021). "Reassessment of Aeolosaurus maximus, a titanosaur dinosaur from the Late Cretaceous of Southeastern Brazil". Historical Biology. 34 (3): 403–411. doi:10.1080/08912963.2021.1920016. S2CID 235526860.
  74. ^ Hocknull SA, Wilkinson M, Lawrence RA, Konstantinov V, Mackenzie S, Mackenzie R (2021). "A new giant sauropod, Australotitan cooperensis gen. et sp. nov., from the mid-Cretaceous of Australia". PeerJ. 9: e11317. doi:10.7717/peerj.11317. PMC 8191491. PMID 34164230.
  75. ^ Beeston SL, Poropat SF, Mannion PD, Pentland AH, Enchelmaier MJ, Sloan T, Elliott DA (2024). "Reappraisal of sauropod dinosaur diversity in the Upper Cretaceous Winton Formation of Queensland, Australia, through 3D digitisation and description of new specimens". PeerJ. 12. e17180. doi:10.7717/peerj.17180. PMC 11011616. PMID 38618562.
  76. ^ de Souza GA, Soares MB, Weinschütz LC, Wilner E, Lopes RT, de Araújo OM, Kellner AW (2021). "The first edentulous ceratosaur from South America". Scientific Reports. 11 (1): Article number 22281. Bibcode:2021NatSR..1122281D. doi:10.1038/s41598-021-01312-4. PMC 8602317. PMID 34795306.
  77. ^ Lockwood, Jeremy A. F.; Martill, David M.; Maidment, Susannah C. R. (2021-11-10). "A new hadrosauriform dinosaur from the Wessex Formation, Wealden Group (Early Cretaceous), of the Isle of Wight, southern England". Journal of Systematic Palaeontology. 19 (12): 847–888. Bibcode:2021JSPal..19..847L. doi:10.1080/14772019.2021.1978005. ISSN 1477-2019. S2CID 244067410.
  78. ^ a b Barker CT, Hone DW, Naish D, Cau A, Lockwood JA, Foster B, Clarkin CE, Schneider P, Gostling NJ (2021). "New spinosaurids from the Wessex Formation (Early Cretaceous, UK) and the European origins of Spinosauridae". Scientific Reports. 11 (1): Article number 19340. Bibcode:2021NatSR..1119340B. doi:10.1038/s41598-021-97870-8. PMC 8481559. PMID 34588472.
  79. ^ Averianov A, Sues HD (2021). "First rebbachisaurid sauropod dinosaur from Asia". PLOS ONE. 16 (2): e0246620. Bibcode:2021PLoSO..1646620A. doi:10.1371/journal.pone.0246620. PMC 7904184. PMID 33626060.
  80. ^ Lerzo NL, Carballido JL, Gallina PA (2021). "Rebbachisaurid sauropods in Asia? A re-evaluation of the phylogenetic position of Dzharatitanis kingi from the Late Cretaceous of Uzbekistan". Publicación Electrónica de la Asociación Paleontológica Argentina. 21 (1): 18–27. doi:10.5710/PEAPA.24.03.2021.389. hdl:11336/165212. S2CID 236689007.
  81. ^ Rodrigo T. Müller (2021). "A new theropod dinosaur from a peculiar Late Triassic assemblage of southern Brazil". Journal of South American Earth Sciences. 107: Article 103026. Bibcode:2021JSAES.10703026M. doi:10.1016/j.jsames.2020.103026. S2CID 229432076.
  82. ^ Prieto-Marquez, Albert; Carrera Farias, Miguel (2021). "The late-surviving early diverging Ibero-Armorican 'duck-billed' dinosaur Fylax and the role of the Late Cretaceous European Archipelago in hadrosauroid biogeography". Acta Palaeontologica Polonica. 66 (2): 425–435. doi:10.4202/app.00821.2020. S2CID 236696588.
  83. ^ Verónica Díez Díaz; Géraldine Garcia; Xabier Pereda Suberbiola; Benjamin Jentgen-Ceschino; Koen Stein; Pascal Godefroit; Xavier Valentin (2020). "A new titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Velaux-La-Bastide Neuve (southern France)". Historical Biology. 33 (11): 2998–3017. doi:10.1080/08912963.2020.1841184. S2CID 234404741.
  84. ^ a b Wang X, Bandeira KL, Qiu R, Jiang S, Cheng X, Ma Y, Kellner AW (2021). "The first dinosaurs from the Early Cretaceous Hami Pterosaur Fauna, China". Scientific Reports. 11 (1): Article number 14962. Bibcode:2021NatSR..1114962W. doi:10.1038/s41598-021-94273-7. PMC 8361124. PMID 34385481.
  85. ^ Beccari V, Mateus O, Wings O, Milàn J, Clemmensen LB (2021). "Issi saaneq gen. et sp. nov.—A New Sauropodomorph Dinosaur from the Late Triassic (Norian) of Jameson Land, Central East Greenland". Diversity. 13 (11): Article 561. doi:10.3390/d13110561. hdl:10362/128951.
  86. ^ Averianov AO, Lopatin AV (2021). "A New Theropod Dinosaur (Theropoda, Dromaeosauridae) from the Late Cretaceous of Tajikistan". Doklady Earth Sciences. 499 (1): 570–574. Bibcode:2021DokES.499..570A. doi:10.1134/S1028334X21070047. S2CID 236478552.
  87. ^ Averianov AO, Lopatin AV (2022). "The second taxon of alvarezsaurid theropod dinosaurs from the Late Cretaceous Khulsan locality in Gobi Desert, Mongolia". Historical Biology. 34 (11): 2125–2136. Bibcode:2022HBio...34.2125A. doi:10.1080/08912963.2021.2000976. S2CID 244421277.
  88. ^ Napoli, James G.; Ruebenstahl, Alexander A.; Bhullar, Bhart-Anjan S.; Turner, Alan H.; Norell, Mark A. (November 2021). "A New Dromaeosaurid (Dinosauria: Coelurosauria) from Khulsan, Central Mongolia". American Museum Novitates (3982): 1–47. doi:10.1206/3982.1. hdl:2246/7286. ISSN 0003-0082. S2CID 243849373.
  89. ^ Iori, F.V.; de Araújo-Júnior, H.I.; Simionato Tavares, S.A.; da Silva Marinho, T.; Martinelli, A.G. (2021). "New theropod dinosaur from the late Cretaceous of Brazil improves abelisaurid diversity". Journal of South American Earth Sciences. 112, Part 1: 103551. Bibcode:2021JSAES.11203551I. doi:10.1016/j.jsames.2021.103551. ISSN 0895-9811. S2CID 239682640.
  90. ^ Gianechini FA, Méndez AH, Filippi LS, Paulina-Carabajal A, Juárez-Valieri RD, Garrido AC (2021). "A New Furileusaurian Abelisaurid from La Invernada (Upper Cretaceous, Santonian, Bajo De La Carpa Formation), Northern Patagonia, Argentina". Journal of Vertebrate Paleontology. 40 (6): e1877151. doi:10.1080/02724634.2020.1877151. S2CID 233551122.
  91. ^ Dalman, S. G.; Lucas, S. G.; Jasinski, S. E.; Lichtig, A. J.; Dodson, P. (2021). "The oldest centrosaurine: a new ceratopsid dinosaur (Dinosauria: Ceratopsidae) from the Allison Member of the Menefee Formation (Upper Cretaceous, early Campanian), northwestern New Mexico, USA". PalZ. 95 (2): 291–335. Bibcode:2021PalZ...95..291D. doi:10.1007/s12542-021-00555-w. S2CID 234351502.
  92. ^ Rolando MA, Garcia Marsà JA, Agnolín FL, Motta MJ, Rodazilla S, Novas FE (2021-09-20). "The sauropod record of Salitral Ojo del Agua: An Upper Cretaceous (Allen Formation) fossiliferous locality from northern Patagonia, Argentina". Cretaceous Research. 129: Article 105029. doi:10.1016/j.cretres.2021.105029. ISSN 0195-6671. S2CID 240577726.
  93. ^ Ji S, Zhang P (2021). "First new genus and species of basal iguanodontian dinosaur (Ornithischia: Ornithopoda) from southern China". Acta Geoscientica Sinica. 43 (1): 1–10. doi:10.3975/cagsb.2021.090701.
  94. ^ Gallina PA, Canale JI, Carballido JL (2021-02-28). "The Earliest Known Titanosaur Sauropod Dinosaur". Ameghiniana. 58 (1): 35–51. doi:10.5710/AMGH.20.08.2020.3376. ISSN 1851-8044. S2CID 226680080.
  95. ^ Chao Tan; Ming Xiao; Hui Dai; Xu-Feng Hu; Ning Li; Qing-Yu Ma; Zhao-Ying Wei; Hai-Dong Yu; Can Xiong; Guang-Zhao Peng; Shan Jiang; Xin-Xin Ren; Hai-Lu You (2020). "A new species of Omeisaurus (Dinosauria: Sauropoda) from the Middle Jurassic of Yunyang, Chongqing, China fauna". Historical Biology. 33 (9): 1817–1829. doi:10.1080/08912963.2020.1743286. S2CID 216282369.
  96. ^ McDonald AT, Wolfe DG, Freedman Fowler EA, Gates TA (2021). "A new brachylophosaurin (Dinosauria: Hadrosauridae) from the Upper Cretaceous Menefee Formation of New Mexico". PeerJ. 9: e11084. doi:10.7717/peerj.11084. PMC 8020878. PMID 33859873.
  97. ^ Pei, R.; Qin, Yuying; Wen, Aishu; Zhao, Q.; Wang, Z.; Liu, Z.; Guo, W.; Liu, P.; Ye, W.; Wang, L.; Yin, Z.; Dai, R.; Xu, X. (2022). "A New Troodontid from the Upper Cretaceous Gobi Basin of Inner Mongolia, China". Cretaceous Research. 130: Article 105052. Bibcode:2022CrRes.13005052P. doi:10.1016/j.cretres.2021.105052. S2CID 244186762.
  98. ^ Spiekman SN, Ezcurra MD, Butler RJ, Fraser NC, Maidment SC (2021). "Pendraig milnerae, a new small-sized coelophysoid theropod from the Late Triassic of Wales". Royal Society Open Science. 8 (10): Article ID 210915. Bibcode:2021RSOS....810915S. doi:10.1098/rsos.210915. PMC 8493203. PMID 34754500.
  99. ^ Santos-Cubedo A, de Santisteban C, Poza B, Meseguer S (2021). "A new styracosternan hadrosauroid (Dinosauria: Ornithischia) from the Early Cretaceous of Portell, Spain". PLOS ONE. 16 (7): e0253599. Bibcode:2021PLoSO..1653599S. doi:10.1371/journal.pone.0253599. PMC 8262792. PMID 34232957.
  100. ^ Upchurch P, Mannion PD, Xu X, Barrett PM (2021). "Re-assessment of the Late Jurassic eusauropod dinosaur Hudiesaurus sinojapanorum Dong, 1997, from the Turpan Basin, China, and the evolution of hyper-robust antebrachia in sauropods". Journal of Vertebrate Paleontology. 41 (4): e1994414. Bibcode:2021JVPal..41E4414U. doi:10.1080/02724634.2021.1994414. S2CID 245164168.
  101. ^ Turner AH, Montanari S, Norell MA (2021). "A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia". American Museum Novitates (3965): 1–48. doi:10.1206/3965.1. hdl:2246/7251. S2CID 231597229.
  102. ^ Dalman SG, Lucas SG, Jasinski SE, Longrich NR (2022). "Sierraceratops turneri, a new chasmosaurine ceratopsid from the Hall Lake Formation (Upper Cretaceous) of south-central New Mexico". Cretaceous Research. 130: Article 105034. Bibcode:2022CrRes.13005034D. doi:10.1016/j.cretres.2021.105034. S2CID 244210664.
  103. ^ Evans DC, Brown CM, You H, Campione NE (2021). "Description and revised diagnosis of Asia's first recorded pachycephalosaurid, Sinocephale bexelli gen. nov., from the Upper Cretaceous of Inner Mongolia, China". Canadian Journal of Earth Sciences. 58 (10): 981–992. Bibcode:2021CaJES..58..981E. doi:10.1139/cjes-2020-0190. S2CID 244227050.
  104. ^ Maidment, Susannah C. R.; Strachan, Sarah J.; Ouarhache, Driss; Scheyer, Torsten M.; Brown, Emily E.; Fernandez, Vincent; Johanson, Zerina; Raven, Thomas J.; Barrett, Paul M. (2021-09-23). "Bizarre dermal armour suggests the first African ankylosaur". Nature Ecology & Evolution. 5 (12): 1576–1581. Bibcode:2021NatEE...5.1576M. doi:10.1038/s41559-021-01553-6. ISSN 2397-334X. PMID 34556830. S2CID 237616095.
  105. ^ Soto-Acuña, Sergio; Vargas, Alexander O.; Kaluza, Jonatan; Leppe, Marcelo A.; Botelho, Joao F.; Palma-Liberona, José; Simon-Gutstein, Carolina; Fernández, Roy A.; Ortiz, Héctor; Milla, Verónica; Aravena, Bárbara; Manríquez, Leslie M. E.; Alarcón-Muñoz, Jhonatan; Pino, Juan Pablo; Trevisan, Cristine; Mansilla, Héctor; Hinojosa, Luis Felipe; Muñoz-Walther, Vicente; Rubilar-Rogers, David (2021-12-01). "Bizarre tail weaponry in a transitional ankylosaur from subantarctic Chile". Nature. 600 (7888): 259–263. Bibcode:2021Natur.600..259S. doi:10.1038/s41586-021-04147-1. ISSN 1476-4687. PMID 34853468. S2CID 244799975.
  106. ^ Sellés AG, Vila B, Brusatte SL, Currie PJ, Galobart À (March 2021). "A fast-growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe". Scientific Reports. 11 (1): 4855. Bibcode:2021NatSR..11.4855S. doi:10.1038/s41598-021-83745-5. PMC 7921422. PMID 33649418.
  107. ^ Park JY, Lee YN, Kobayashi Y, Jacobs LL, Barsbold R, Lee HJ, Kim N, Song KY, Polcyn MJ (2021). "A new ankylosaurid from the Upper Cretaceous Nemegt Formation of Mongolia and implications for paleoecology of armoured dinosaurs". Scientific Reports. 11 (1): Article number 22928. Bibcode:2021NatSR..1122928P. doi:10.1038/s41598-021-02273-4. PMC 8616956. PMID 34824329.
  108. ^ Ramírez-Velasco ÁA, Aguilar FJ, Hernández-Rivera R, Gudiño Maussán JL, Rodriguez ML, Alvarado-Ortega J (2021). "Tlatolophus galorum, gen. et sp. nov., a parasaurolophini dinosaur from the upper Campanian of the Cerro del Pueblo Formation, Coahuila, northern Mexico". Cretaceous Research. 126: Article 104884. Bibcode:2021CrRes.12604884R. doi:10.1016/j.cretres.2021.104884.
  109. ^ Tanaka K, Anvarov OU, Zelenitsky DK, Ahmedshaev AS, Kobayashi Y (2021). "A new carcharodontosaurian theropod dinosaur occupies apex predator niche in the early Late Cretaceous of Uzbekistan". Royal Society Open Science. 8 (9): Article ID 210923. Bibcode:2021RSOS....810923T. doi:10.1098/rsos.210923. PMC 8424376. PMID 34527277.
  110. ^ Sues HD, Averianov A, Britt BB (2022). "A giant dromaeosaurid theropod from the Upper Cretaceous (Turonian) Bissekty Formation of Uzbekistan and the status of Ulughbegsaurus uzbekistanensis". Geological Magazine. 160 (2): 355–360. doi:10.1017/S0016756822000954. S2CID 255025983.
  111. ^ Longrich, Nicholas R.; Martill, David M.; Jacobs, Megan L. (2021-12-17). "A new dromaeosaurid dinosaur from the Wessex Formation (Lower Cretaceous, Barremian) of the Isle of Wight, and implications for European palaeobiogeography". Cretaceous Research. 134: 105123. doi:10.1016/j.cretres.2021.105123. ISSN 0195-6671. S2CID 245324247.
  112. ^ Kobayashi Y, Takasaki R, Kubota K, Fiorillo AR (2021). "A new basal hadrosaurid (Dinosauria: Ornithischia) from the latest Cretaceous Kita-ama Formation in Japan implies the origin of hadrosaurids". Scientific Reports. 11 (1): Article number 8547. Bibcode:2021NatSR..11.8547K. doi:10.1038/s41598-021-87719-5. PMC 8076177. PMID 33903622.
  113. ^ Arthur S. Brum; Rodrigo V. Pêgas; Kamila L. N. Bandeira; Lucy G. Souza; Diogenes A. Campos; Alexander W. A. Kellner (2021). "A new unenlagiine (Theropoda, Dromaeosauridae) from the Upper Cretaceous of Brazil". Papers in Palaeontology. 7 (4): 2075–2099. Bibcode:2021PPal....7.2075B. doi:10.1002/spp2.1375. S2CID 238854675.
  114. ^ Schroeder K, Lyons SK, Smith FA (February 2021). "The influence of juvenile dinosaurs on community structure and diversity". Science. 371 (6532): 941–944. Bibcode:2021Sci...371..941S. doi:10.1126/science.abd9220. PMID 33632845. S2CID 232050541.
  115. ^ Benson RB, Brown CM, Campione NE, Cullen TM, Evans DC, Zanno LE (2022). "Comment on "The influence of juvenile dinosaurs on community structure and diversity"". Science. 375 (6578): eabj5976. doi:10.1126/science.abj5976. PMID 35050649. S2CID 246100083.
  116. ^ Schroeder KM, Lyons SK, Smith FA (2022). "Response to Comment on "The influence of juvenile dinosaurs on community structure and diversity"". Science. 375 (6578): eabj7383. doi:10.1126/science.abj7383. PMID 35050650. S2CID 246078669.
  117. ^ Rothschild BM, Witzmann F (2021). "Identification of growth cessation in dinosaurs based on microscopy of long bone articular surfaces: preliminary results". Alcheringa: An Australasian Journal of Palaeontology. 45 (2): 260–273. Bibcode:2021Alch...45..260R. doi:10.1080/03115518.2021.1921273. S2CID 236222208.
  118. ^ Griebeler EM (2021). "Dinosaurian survivorship schedules revisited: new insights from an age-structured population model". Palaeontology. 64 (6): 839–854. Bibcode:2021Palgy..64..839G. doi:10.1111/pala.12576.
  119. ^ Canoville A, Zanno LE, Zheng W, Schweitzer MH (January 2021). "Keratan sulfate as a marker for medullary bone in fossil vertebrates". Journal of Anatomy. 238 (6): 1296–1311. doi:10.1111/joa.13388. PMC 8128763. PMID 33398875.
  120. ^ Hone DW, Persons WS, Le Comber SC (2021). "New data on tail lengths and variation along the caudal series in the non-avialan dinosaurs". PeerJ. 9: e10721. doi:10.7717/peerj.10721. PMC 7891087. PMID 33628634.
  121. ^ Motani R (2021). "Sex estimation from morphology in living animals and dinosaurs". Zoological Journal of the Linnean Society. 192 (4): 1029–1044. doi:10.1093/zoolinnean/zlaa181. ISSN 0024-4082.
  122. ^ Chiarenza AA, Mannion PD, Farnsworth A, Carrano MT, Varela S (2021). "Climatic constraints on the biogeographic history of Mesozoic dinosaurs". Current Biology. 32 (3): 570–585.e3. doi:10.1016/j.cub.2021.11.061. hdl:11093/5013. PMID 34921764. S2CID 245273901.
  123. ^ Novas FE, Agnolin FL, Ezcurra MD, Müller RT, Martinelli A, Langer M (2021). "Review of the fossil record of early dinosaurs from South America, and its phylogenetic implications". Journal of South American Earth Sciences. 110: Article 103341. Bibcode:2021JSAES.11003341N. doi:10.1016/j.jsames.2021.103341.
  124. ^ Lockley MG, Xing L, Kim KS, Meyer CA (2021). "Tortuous trackways: evidence and implications of deviations, turns and changes in direction by dinosaurian trackmakers". Historical Biology. 33 (12): 3326–3339. Bibcode:2021HBio...33.3326L. doi:10.1080/08912963.2020.1865945. S2CID 234128960.
  125. ^ Philip T. Hadland; Steve Friedrich; Abdelouahe Lagnaoui; David M. Martill (2021). "The youngest dinosaur footprints from England and their palaeoenvironmental implications". Proceedings of the Geologists' Association. 132 (4): 479–490. Bibcode:2021PrGA..132..479H. doi:10.1016/j.pgeola.2021.04.005. S2CID 237785764.
  126. ^ Romilio, A; Godfrey, T (2021-12-09). "A new dinosaur tracksite from the Lower Cretaceous (Aptian–Albian) Eumeralla Formation of Wattle Hill, Victoria, Australia: a preliminary investigation". Historical Biology. 34 (12): 2315–2323. doi:10.1080/08912963.2021.2014481. S2CID 253500472.
  127. ^ Shen, H.; Zhang, L.; Wang, C.; Amiot, R.; Wang, X.; Cui, L.; Song, P. (2021). "Early Jurassic palaeoclimate in Southwest China and its implications for dinosaur fossil distribution" (PDF). Geological Journal. 56 (12): 6245–6258. Bibcode:2021GeolJ..56.6245S. doi:10.1002/gj.4168. S2CID 236354974.
  128. ^ Melstrom KM, Chiappe LM, Smith ND (2021). "Exceptionally simple, rapidly replaced teeth in sauropod dinosaurs demonstrate a novel evolutionary strategy for herbivory in Late Jurassic ecosystems". BMC Ecology and Evolution. 21 (1): Article number 202. doi:10.1186/s12862-021-01932-4. PMC 8571970. PMID 34742237.
  129. ^ Brownstein CD (2021). "Dinosaurs from the Santonian–Campanian Atlantic coastline substantiate phylogenetic signatures of vicariance in Cretaceous North America". Royal Society Open Science. 8 (8): Article ID 210127. Bibcode:2021RSOS....810127D. doi:10.1098/rsos.210127. PMC 8385347. PMID 34457333.
  130. ^ Druckenmiller PS, Erickson GM, Brinkman D, Brown CM, Eberle JJ (2021). "Nesting at extreme polar latitudes by non-avian dinosaurs". Current Biology. 31 (16): 3469–3478.e5. Bibcode:2021CBio...31E3469D. doi:10.1016/j.cub.2021.05.041. PMID 34171301. S2CID 235631483.
  131. ^ García-Girón J, Heino J, Alahuhta J, Chiarenza AA, Brusatte SL (2021). "Palaeontology meets metacommunity ecology: the Maastrichtian dinosaur fossil record of North America as a case study". Palaeontology. 64 (3): 335–357. Bibcode:2021Palgy..64..335G. doi:10.1111/pala.12526. hdl:20.500.11820/92a3b0bb-83d5-4c09-9afb-8ee386bdaf92. ISSN 0031-0239. S2CID 233819979.
  132. ^ Perry GL (January 2021). "How far might plant-eating dinosaurs have moved seeds?". Biology Letters. 17 (1): 20200689. doi:10.1098/rsbl.2020.0689. PMC 7876603. PMID 33401998.
  133. ^ Lallensack JN, Farlow JO, Falkingham PL (2021). "A new solution to an old riddle: elongate dinosaur tracks explained as deep penetration of the foot, not plantigrade locomotion" (PDF). Palaeontology. 65. doi:10.1111/pala.12584. S2CID 245017775.
  134. ^ Condamine FL, Guinot G, Benton MJ, Currie PJ (2021). "Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures". Nature Communications. 12 (1): Article number 3833. Bibcode:2021NatCo..12.3833C. doi:10.1038/s41467-021-23754-0. PMC 8242047. PMID 34188028.
  135. ^ Bonsor JA, Barrett PM, Raven TJ, Cooper N (2020). "Dinosaur diversification rates were not in decline prior to the K-Pg boundary". Royal Society Open Science. 7 (11): Article ID 201195. Bibcode:2020RSOS....701195B. doi:10.1098/rsos.201195. PMC 7735361. PMID 33391800. S2CID 226981705.
  136. ^ Sakamoto M, Benton MJ, Venditti C (2021). "Strong support for a heterogeneous speciation decline model in Dinosauria: a response to claims made by Bonsor et al. (2020)". Royal Society Open Science. 8 (8): Article ID 202143. Bibcode:2021RSOS....802143S. doi:10.1098/rsos.202143. PMC 8385376. PMID 34457325.
  137. ^ Kim S, Hwang IG, Ghim YS, Kim N, Lee Y (2022). "Upper Cretaceous (Coniacian-Santonian) dinosaur nesting colony preserved in abandoned crevasse splay deposits, Wi Island, South Korea". Palaeogeography, Palaeoclimatology, Palaeoecology. 585: 110728. Bibcode:2022PPP...58510728K. doi:10.1016/j.palaeo.2021.110728. ISSN 0031-0182. S2CID 239975835.
  138. ^ Salem BS, O'Connor PM, Gorscak E, El-Sayed S, Sertich JJ, Seiffert E, Sallam HM (2021). "Dinosaur remains from the Upper Cretaceous (Campanian) of the Western Desert, Egypt". Cretaceous Research. 123: Article 104783. Bibcode:2021CrRes.12304783S. doi:10.1016/j.cretres.2021.104783. S2CID 233900405.
  139. ^ Kundrát M, Cruickshank AR (2021). "New information on multispherulitic dinosaur eggs: Faveoloolithidae and Dendroolithidae". Historical Biology. 34 (6): 1072–1084. doi:10.1080/08912963.2021.1961764. S2CID 238687752.
  140. ^ Garcia MS, Müller RT, Pretto FA, Da-Rosa ÁA, Dias-Da-Silva S (2021). "Taxonomic and phylogenetic reassessment of a large-bodied dinosaur from the earliest dinosaur-bearing beds (Carnian, Upper Triassic) from southern Brazil". Journal of Systematic Palaeontology. 19 (1): 1–37. Bibcode:2021JSPal..19....1G. doi:10.1080/14772019.2021.1873433. S2CID 232313141.
  141. ^ Romilio A, Klein H, Jannel A, Salisbury SW (2021). "Saurischian dinosaur tracks from the Upper Triassic of southern Queensland: possible evidence for Australia's earliest sauropodomorph trackmaker". Historical Biology. 34 (9): 1834–1843. doi:10.1080/08912963.2021.1984447. S2CID 239170287.
  142. ^ Cashmore DD, Butler RJ, Maidment SC (2021). "Taxonomic identification bias does not drive patterns of abundance and diversity in theropod dinosaurs". Biology Letters. 17 (7): Articles ID 20210168. doi:10.1098/rsbl.2021.0168. PMC 8278044. PMID 34256583.
  143. ^ Choiniere JN, Neenan JM, Schmitz L, Ford DP, Chapelle KE, Balanoff AM, Sipla JS, Georgi JA, Walsh SA, Norell MA, Xu X, Clark JM, Benson RB (2021). "Evolution of vision and hearing modalities in theropod dinosaurs". Science. 372 (6542): 610–613. Bibcode:2021Sci...372..610C. doi:10.1126/science.abe7941. PMID 33958472. S2CID 233872840.
  144. ^ Ma W, Pittman M, Butler RJ, Lautenschlager S (2021). "Macroevolutionary trends in theropod dinosaur feeding mechanics". Current Biology. 32 (3): 677–686.e3. doi:10.1016/j.cub.2021.11.060. PMID 34919807. S2CID 245257271.
  145. ^ Bishop PJ, Falisse A, De Groote F, Hutchinson JR (2021). "Predictive simulations of running gait reveal a critical dynamic role for the tail in bipedal dinosaur locomotion". Science Advances. 7 (39): eabi7348. Bibcode:2021SciA....7.7348B. doi:10.1126/sciadv.abi7348. PMC 8457660. PMID 34550734.
  146. ^ Marsh AD, Milner AR, Harris JD, De Blieux DD, Kirkland JI (2021). "A non-averostran neotheropod vertebra (Dinosauria: Theropoda) from the earliest Jurassic Whitmore Point Member (Moenave Formation) in southwestern Utah". Journal of Vertebrate Paleontology. 41 (1): e1897604. Bibcode:2021JVPal..41E7604M. doi:10.1080/02724634.2021.1897604. S2CID 236290889.
  147. ^ McMenamin, M. (2021). Large neotheropod from the Lower Jurassic of Massachusetts. AcademiaLetters, Article 3591. doi:10.20935/AL3591.1©2021 by the author — Open Access — Distributed under CC BY 4.0
  148. ^ Li H, Peyre de Fabrègues C, Bi S, Wang Y, Xu X (2021). "The largest theropod track site in Yunnan, China: a footprint assemblage from the Lower Jurassic Fengjiahe Formation". PeerJ. 9: e11788. doi:10.7717/peerj.11788. PMC 8500084. PMID 34707920.
  149. ^ Rauhut OW, Pol D (2021). "New theropod remains from the Late Jurassic Cañadón Calcáreo formation of Chubut, Argentina". Journal of South American Earth Sciences. 111: Article 103434. Bibcode:2021JSAES.11103434R. doi:10.1016/j.jsames.2021.103434.
  150. ^ Ibiricu LM, Baiano MA, Martínez RD, Alvarez BN, Lamanna MC, Casal GA (2021). "A detailed osteological description of Xenotarsosaurus bonapartei (Theropoda: Abelisauroidae): implications for abelisauroid phylogeny". Cretaceous Research. 124: Article 104829. Bibcode:2021CrRes.12404829I. doi:10.1016/j.cretres.2021.104829. S2CID 233653593.
  151. ^ Méndez AH, Gianechini FA, Paulina-Carabajal A, Filippi LS, Juárez-Valieri RD, Cerda IA, Garrido AC (2021). "New furileusaurian remains from La Invernada (northern Patagonia, Argentina): A site of unusual abelisaurids abundance". Cretaceous Research. 129: Article 104989. doi:10.1016/j.cretres.2021.104989. ISSN 0195-6671. S2CID 238646344.
  152. ^ Hendrickx C, Bell PR (2021). "The scaly skin of the abelisaurid Carnotaurus sastrei (Theropoda: Ceratosauria) from the Upper Cretaceous of Patagonia". Cretaceous Research. 128: Article 104994. Bibcode:2021CrRes.12804994H. doi:10.1016/j.cretres.2021.104994.
  153. ^ Cau, A. (2021). "Comments on the Mesozoic theropod dinosaurs from Italy". Atti della Società dei Naturalisti e dei Matematici di Modena. 152: 81–95.
  154. ^ Navarro-Lorbés P, Ruiz J, Díaz-Martínez I, Isasmendi E, Sáez-Benito P, Viera L, Pereda-Suberbiola X, Torices A (2021). "Fast-running theropods tracks from the Early Cretaceous of La Rioja, Spain". Scientific Reports. 11 (1): Article number 23095. Bibcode:2021NatSR..1123095N. doi:10.1038/s41598-021-02557-9. PMC 8660891. PMID 34887437.
  155. ^ McFeeters B (2021). "New mid-cervical vertebral morphotype of Spinosauridae from the Kem Kem Group of Morocco". Vertebrate Anatomy Morphology Palaeontology. 8: 182–193. doi:10.18435/vamp29370.
  156. ^ Samathi A, Sander PM, Chanthasit P (2021). "A spinosaurid from Thailand (Sao Khua Formation, Early Cretaceous) and a reassessment of Camarillasaurus cirugedae from the Early Cretaceous of Spain". Historical Biology. 33 (12): 3480–3494. Bibcode:2021HBio...33.3480S. doi:10.1080/08912963.2021.1874372. S2CID 233884025.
  157. ^ Lacerda MB, Grillo ON, Romano PS (2022). "Rostral morphology of Spinosauridae (Theropoda, Megalosauroidea): premaxilla shape variation and a new phylogenetic inference". Historical Biology. 34 (11): 2089–2109. Bibcode:2022HBio...34.2089L. doi:10.1080/08912963.2021.2000974. S2CID 244418803.
  158. ^ Hone DW, Holtz TR (2021). "Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist?". Palaeontologia Electronica. 24 (1): Article number 24(1):a03. doi:10.26879/1110. hdl:1903/28570.
  159. ^ Pahl, Cameron C.; Ruedas, Luis A. (2021). "Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs". Ecological Modelling. 458: 109706. Bibcode:2021EcMod.45809706P. doi:10.1016/j.ecolmodel.2021.109706. ISSN 0304-3800.
  160. ^ Kane, Adam; Healy, Kevin; Ruxton, Graeme D. (2023). "Was Allosaurus really predominantly a scavenger?". Ecological Modelling. 476: 110247. Bibcode:2023EcMod.47610247K. doi:10.1016/j.ecolmodel.2022.110247. ISSN 0304-3800. S2CID 254712679.
  161. ^ Pahl, Cameron C.; Ruedas, Luis A. (2023-03-01). "Allosaurus was predominantly a scavenger". Ecological Modelling. 477: 110261. Bibcode:2023EcMod.47710261P. doi:10.1016/j.ecolmodel.2022.110261. ISSN 0304-3800. S2CID 255661337.
  162. ^ Ferrante C, Cavin L, Vennemann T, Martini R (2021). "Histology and Geochemistry of Allosaurus (Dinosauria: Theropoda) From the Cleveland-Lloyd Dinosaur Quarry (Late Jurassic, Utah): Paleobiological Implications". Frontiers in Earth Science. 9: Article 641060. Bibcode:2021FrEaS...9..225F. doi:10.3389/feart.2021.641060. S2CID 233131160.
  163. ^ Bandeira KL, Brum AS, Pêgas RV, Souza LG, Pereira PV, Pinheiro AE (2021). "The first Jurassic theropod from the Sergi Formation, Jatobá Basin, Brazil". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20201557. doi:10.1590/0001-3765202120201557. PMID 34378647.
  164. ^ Meso JG, Juárez Valieri RD, Porfiri JD, Correa SA, Martinelli AG, Casal GA, Canudo JI, Poblete F, Dos Santos D (2021). "Testing the persistence of Carcharodontosauridae (Theropoda) in the Upper Cretaceous of Patagonia based on dental evidence". Cretaceous Research. 125: Article 104875. Bibcode:2021CrRes.12504875M. doi:10.1016/j.cretres.2021.104875. hdl:11336/183886. ISSN 0195-6671.
  165. ^ Samathi A, Suteethorn S, Pradit N, Suteethorn V (2021). "New material of Phuwiangvenator yaemniyomi (Dinosauria: Theropoda) from the type locality: implications for the early evolution of Megaraptora". Cretaceous Research. 131: Article 105093. doi:10.1016/j.cretres.2021.105093. S2CID 244363244.
  166. ^ Aranciaga Rolando A, Méndez A, Canale J, Novas F (2021). "Osteology of Aerosteon riocoloradensis (Sereno et al. 2008) a large megaraptoran (Dinosauria: Theropoda) from the Upper Cretaceous of Argentina". Historical Biology. 34 (2): 226–282. doi:10.1080/08912963.2021.1910816. S2CID 237682552.
  167. ^ Yun CG (2021). "Tyrannosaurid theropod specimens in the San Diego Natural History Museum from the Dinosaur Park Formation (Campanian) of Alberta, Canada". New Mexico Museum of Natural History and Science Bulletin. 82: 569–578.
  168. ^ Dalman SG, Lucas SG (2021). "New evidence for cannibalism in tyrannosaurid dinosaurs from the Upper Cretaceous (Campanian/Maastrichtian) San Juan Basin of New Mexico". New Mexico Museum of Natural History and Science Bulletin. 82: 39–56.
  169. ^ Caneer T, Moklestad T, Lucas SG (2021). "Tracks in the Upper Cretaceous of the Raton Basin possibly show tyrannosaurid rising from a prone position". New Mexico Museum of Natural History and Science Bulletin. 82: 29–37.
  170. ^ Funston GF, Powers MJ, Whitebone SA, Brusatte SL, Scannella JB, Horner JR, Currie PJ (2021). "Baby tyrannosaurid bones and teeth from the Late Cretaceous of western North America" (PDF). Canadian Journal of Earth Sciences. 58 (9): 756–777. Bibcode:2021CaJES..58..756F. doi:10.1139/cjes-2020-0169. hdl:20.500.11820/3a870ad5-7258-4fcb-a3b7-238e448c04b4. S2CID 234053280.
  171. ^ Enriquez NJ, Campione NE, Brougham T, Fanti F, White MA, Sissons RL, et al. (2021). "Exploring possible ontogenetic trajectories in tyrannosaurids using tracks from the Wapiti Formation (upper Campanian) of Alberta, Canada". Journal of Vertebrate Paleontology. 40 (6): e1878201. doi:10.1080/02724634.2021.1878201. S2CID 234814620.
  172. ^ Bolotsky IY, Ermatsans IA, Bolotsky YL (2021). "Tyrannosaurid remains (Dinosauria: Tyrannosauridae) from localities in Blagoveshchensk and Kundur (Amur Region, Russia)". Biota and Environment of Natural Areas. 2021 (2): 49–70. doi:10.37102/2782-1978_2021_2_4. S2CID 245529797.
  173. ^ Holtz TR (2021). "Theropod guild structure and the tyrannosaurid niche assimilation hypothesis: implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerica". Canadian Journal of Earth Sciences. 58 (9): 778–795. doi:10.1139/cjes-2020-0174. hdl:1903/28566.
  174. ^ Brown CM, Currie PJ, Therrien F (2021). "Intraspecific facial bite marks in tyrannosaurids provide insight into sexual maturity and evolution of bird-like intersexual display". Paleobiology. 48: 12–43. doi:10.1017/pab.2021.29. S2CID 239632592.
  175. ^ Therrien F, Zelenitsky DK, Voris JT, Tanaka K (2021). "Mandibular force profiles and tooth morphology in growth series of Albertosaurus sarcophagus and Gorgosaurus libratus (Tyrannosauridae: Albertosaurinae) provide evidence for an ontogenetic dietary shift in tyrannosaurids". Canadian Journal of Earth Sciences. 58 (9): 812–828. Bibcode:2021CaJES..58..812T. doi:10.1139/cjes-2020-0177. S2CID 234026715.
  176. ^ Rowe AJ, Snively E (February 2021). "Biomechanics of juvenile tyrannosaurid mandibles and their implications for bite force: Evolutionary biology". Anatomical Record. 305 (2): 373–392. doi:10.1002/ar.24602. PMID 33586862. S2CID 231927717.
  177. ^ Titus AL, Knoll K, Sertich JJ, Yamamura D, Suarez CA, Glasspool IJ, et al. (2021). "Geology and taphonomy of a unique tyrannosaurid bonebed from the upper Campanian Kaiparowits Formation of southern Utah: implications for tyrannosaurid gregariousness". PeerJ. 9: e11013. doi:10.7717/peerj.11013. PMC 8061582. PMID 33976955.
  178. ^ Yun CG (2021). "A juvenile metatarsal of cf. Daspletosaurus torosus: Implications for ontogeny in tyrannosaurid theropods" (PDF). Acta Palaeontologica Romaniae. 17 (2): 15–22. doi:10.35463/j.apr.2021.02.02. S2CID 237724062.
  179. ^ Paulina Carabajal A, Currie PJ, Dudgeon TW, Larsson HC, Miyashita T (2021). "Two braincases of Daspletosaurus (Theropoda: Tyrannosauridae): anatomy and comparison". Canadian Journal of Earth Sciences. 58 (9): 885–910. doi:10.1139/cjes-2020-0185.
  180. ^ Marshall CR, Latorre DV, Wilson CJ, Frank TM, Magoulick KM, Zimmt JB, Poust AW (April 2021). "Absolute abundance and preservation rate of Tyrannosaurus rex". Science. 372 (6539): 284–287. Bibcode:2021Sci...372..284M. doi:10.1126/science.abc8300. PMID 33859033. S2CID 233245062.
  181. ^ Meiri S (2022). "Population sizes of T. rex cannot be precisely estimated". Frontiers of Biogeography. 14 (2): e53781. doi:10.21425/F5FBG53781. S2CID 245288933.
  182. ^ Marshall CR, Latorre DV, Wilson CJ, Frank TM, Magoulick KM, Zimmt JB, Poust AW (2022). "With what precision can the population size of Tyrannosaurus rex be estimated? A reply to Meiri". Frontiers of Biogeography. 14 (2): e55042. doi:10.21425/F5FBG55042. hdl:10852/101238. S2CID 245314491.
  183. ^ van Bijlert PA, van Soest AJ, Schulp AS (2021). "Natural Frequency Method: estimating the preferred walking speed of Tyrannosaurus rex based on tail natural frequency". Royal Society Open Science. 8 (4): Article ID 201441. Bibcode:2021RSOS....801441V. doi:10.1098/rsos.201441. PMC 8059583. PMID 33996115. S2CID 233312053.
  184. ^ Kawabe S, Hattori S (2022). "Complex neurovascular system in the dentary of Tyrannosaurus". Historical Biology. 34 (7): 1137–1145. Bibcode:2022HBio...34.1137K. doi:10.1080/08912963.2021.1965137. S2CID 238728702.
  185. ^ Peterson JE, Tseng ZJ, Brink S (2021). "Bite force estimates in juvenile Tyrannosaurus rex based on simulated puncture marks". PeerJ. 9: e11450. doi:10.7717/peerj.11450. PMC 8179241. PMID 34141468.
  186. ^ Ullmann PV, Macauley K, Ash RD, Shoup B, Scannella JB (2021). "Taphonomic and Diagenetic Pathways to Protein Preservation, Part I: The Case of Tyrannosaurus rex Specimen MOR 1125". Biology. 10 (11): Article 1193. doi:10.3390/biology10111193. PMC 8614911. PMID 34827186.
  187. ^ Cuesta E, Vidal D, Ortega F, Shibata M, Sanz JL (2021). "Pelecanimimus (Theropoda: Ornithomimosauria) postcranial anatomy and the evolution of the specialized manus in Ornithomimosaurs and sternum in maniraptoriforms". Zoological Journal of the Linnean Society. 194 (2): 553–591. doi:10.1093/zoolinnean/zlab013.
  188. ^ Nottrodt RE, Farke AA (2021). "New data on the distal tarsals in Ornithomimidae". Acta Palaeontologica Polonica. 66 (4): 789–796. doi:10.4202/app.00884.2021. S2CID 240011882.
  189. ^ Rhodes MM, Henderson DM, Currie PJ (2021). "Maniraptoran pelvic musculature highlights evolutionary patterns in theropod locomotion on the line to birds". PeerJ. 9: e10855. doi:10.7717/peerj.10855. PMC 7937347. PMID 33717681.
  190. ^ Federico L. Agnolín, Jun-Chang Lu, Martin Kundrát & Li Xu (2021) Alvarezsaurid osteology: new data on cranial anatomy, Historical Biology, doi:10.1080/08912963.2021.1929203
  191. ^ Meso JG, Qin Z, Pittman M, Canale JI, Salgado L, Díaz VD (2021). "Tail anatomy of the Alvarezsauria (Theropoda, Coelurosauria), and its functional and behavioural implications". Cretaceous Research. 124: Article 104830. Bibcode:2021CrRes.12404830M. doi:10.1016/j.cretres.2021.104830. S2CID 233858300.
  192. ^ Qin Z, Zhao Q, Choiniere JN, Clark JM, Benton MJ, Xu X (2021). "Growth and miniaturization among alvarezsauroid dinosaurs". Current Biology. 31 (16): 3687–3693.e5. Bibcode:2021CBio...31E3687Q. doi:10.1016/j.cub.2021.06.013. PMID 34233160. S2CID 235752037.
  193. ^ Hattori S, Kawabe S, Imai T, Shibata M, Miyata K, Xu X, Azuma Y (2021). "Osteology of Fukuivenator paradoxus: A bizarre maniraptoran theropod from the Early Cretaceous of Fukui, Japan" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 20: 1–82.
  194. ^ Liao CC, Zanno LE, Wang S, Xu X (2021). "Postcranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria)". PLOS ONE. 16 (9): e0257913. Bibcode:2021PLoSO..1657913L. doi:10.1371/journal.pone.0257913. PMC 8483305. PMID 34591927.
  195. ^ Korneisel DE, Nesbitt SJ, Werning S, Xiao S (2021). "Putative fossil blood cells reinterpreted as diagenetic structures". PeerJ. 9: e12651. Bibcode:2021PeerJ...912651K. doi:10.7717/peerj.12651. PMC 8684720. PMID 35003935.
  196. ^ Smith DK (January 2021). "Hind limb muscle reconstruction in the incipiently opisthopubic large therizinosaur Nothronychus (Theropoda; Maniraptora)". Journal of Anatomy. 238 (6): 1404–1424. doi:10.1111/joa.13382. PMC 8128771. PMID 33417263.
  197. ^ Smith DK (March 2021). "Forelimb musculature and function in the therizinosaur Nothronychus (Maniraptora, Theropoda)". Journal of Anatomy. 239 (2): 307–335. doi:10.1111/joa.13418. PMC 8273597. PMID 33665832. S2CID 232124454.
  198. ^ Zheng X, Bailleul AM, Li Z, Wang X, Zhou Z (2021). "Nuclear preservation in the cartilage of the Jehol dinosaur Caudipteryx". Communications Biology. 4 (1): Articles 1125. doi:10.1038/s42003-021-02627-8. PMC 8463611. PMID 34561538.
  199. ^ Funston GF, Currie PJ, Tsogtbaatar C, Khishigjav T (2021). "A partial oviraptorosaur skeleton suggests low caenagnathid diversity in the Late Cretaceous Nemegt Formation of Mongolia". PLOS ONE. 16 (7): e0254564. Bibcode:2021PLoSO..1654564F. doi:10.1371/journal.pone.0254564. PMC 8274908. PMID 34252154.
  200. ^ Atkins-Weltman KL, Snively E, O'Connor P (2021). "Constraining the body mass range of Anzu wyliei (Theropoda: Caenagnathidae) using volumetric and extant–scaling methods". Vertebrate Anatomy Morphology Palaeontology. 9: 95–104. doi:10.18435/vamp29375.
  201. ^ Yun C, Funston GG (2021). "A caenagnathid oviraptorosaur metatarsal from the Mesaverde Formation (Campanian) of Wyoming, USA". Vertebrate Anatomy Morphology Palaeontology. 9: 105–115. doi:10.18435/vamp29376.
  202. ^ Xing L, Niu K, Ma W, Zelenitsky DK, Yang TR, Brusatte SL (2021). "An exquisitely preserved in-ovo theropod dinosaur embryo sheds light on avian-like prehatching postures". iScience. 25 (1): Article 103516. doi:10.1016/j.isci.2021.103516. PMC 8786642. PMID 35106456. S2CID 245398552.
  203. ^ Deeming DC, Kundrát M (2022). "Interpretation of fossil embryos requires reasonable assessment of developmental age". Paleobiology. 49: 68–76. doi:10.1017/pab.2022.21. S2CID 250938817.
  204. ^ Cau A, Beyrand V, Barsbold R, Tsogtbaatar K, Godefroit P (2021). "Unusual pectoral apparatus in a predatory dinosaur resolves avian wishbone homology". Scientific Reports. 11 (1): 14722. Bibcode:2021NatSR..1114722C. doi:10.1038/s41598-021-94285-3. PMC 8289867. PMID 34282248.
  205. ^ Novas FE, Agnolín FL, Motta MJ, Brissón Egli F (April 2021). "Osteology of Unenlagia comahuensis (Theropoda, Paraves, Unenlagiidae) from the Late Cretaceous of Patagonia". Anatomical Record. 304 (12): 2741–2788. doi:10.1002/ar.24641. PMID 33894102. S2CID 233390123.
  206. ^ Gianechini FA, Zurriaguz VL (2021). "Vertebral pneumaticity of the paravian theropod Unenlagia comahuensis, from the Upper Cretaceous of Patagonia, Argentina". Cretaceous Research. 127: Article 104925. Bibcode:2021CrRes.12704925G. doi:10.1016/j.cretres.2021.104925.
  207. ^ Wang S, Zhang Q, Tan Q, Jiangzuo Q, Zhang H, Tan L (2021). "New troodontid theropod specimen from Inner Mongolia, China clarifies phylogenetic relationships of later-diverging small-bodied troodontids and paravian body size evolution". Cladistics. 38 (1): 59–82. doi:10.1111/cla.12467. PMID 35049080. S2CID 237738013.
  208. ^ Qian Maiping; Duan Zheng; Ma Xue; Chen Rong; Zhang Xiang; Yu Minggang; Zhao Qian (2021). "A Cretaceous troodontid laid her pairs of eggs vertically and arranged spirally in a nest". Jiangsu Geology. 2: 138–142.
  209. ^ Freimuth WJ, Varricchio DJ, Brannick AL, Weaver LN, Wilson Mantilla GP (2021). "Mammal-bearing gastric pellets potentially attributable to Troodon formosus at the Cretaceous Egg Mountain locality, Two Medicine Formation, Montana, USA". Palaeontology. 64 (5): 699–725. Bibcode:2021Palgy..64..699F. doi:10.1111/pala.12546. S2CID 237659529.
  210. ^ Cau A, Madzia D (2021). "The phylogenetic affinities and morphological peculiarities of the bird-like dinosaur Borogovia gracilicrus from the Upper Cretaceous of Mongolia". PeerJ. 9: e12640. doi:10.7717/peerj.12640. PMC 8656384. PMID 34963824.
  211. ^ Brown CM, Tanke DH, Hone DW (2021). "Rare evidence for 'gnawing-like' behavior in a small-bodied theropod dinosaur". PeerJ. 9: e11557. doi:10.7717/peerj.11557. PMC 8234920. PMID 34221716.
  212. ^ Cullen TM, Zanno L, Larson DW, Todd E, Currie PJ, Evans DC (2021). "Anatomical, morphometric, and stratigraphic analyses of theropod biodiversity in the Upper Cretaceous (Campanian) Dinosaur Park Formation". Canadian Journal of Earth Sciences. 58 (9): 870–884. doi:10.1139/cjes-2020-0145.
  213. ^ Oser SE, Chin K, Sertich JJ, Varricchio DJ, Choi S, Rifkin J (2021). "Tiny, ornamented eggs and eggshell from the Upper Cretaceous of Utah represent a new ootaxon with theropod affinities". Scientific Reports. 11 (1): 10021. Bibcode:2021NatSR..1110021O. doi:10.1038/s41598-021-89472-1. PMC 8113451. PMID 33976315.
  214. ^ Pol D, Otero A, Apaldetti C, Martínez RN (2021). "Triassic sauropodomorph dinosaurs from South America: The origin and diversification of dinosaur dominated herbivorous faunas". Journal of South American Earth Sciences. 107: Article 103145. Bibcode:2021JSAES.10703145P. doi:10.1016/j.jsames.2020.103145. S2CID 233579282.
  215. ^ Müller RT (2021). "Olfactory acuity in early sauropodomorph dinosaurs". Historical Biology. 34 (2): 346–351. doi:10.1080/08912963.2021.1914600. S2CID 234821131.
  216. ^ Kent DV, Clemmensen LB (February 2021). "Northward dispersal of dinosaurs from Gondwana to Greenland at the mid-Norian (215-212 Ma, Late Triassic) dip in atmospheric pCO2". Proceedings of the National Academy of Sciences of the United States of America. 118 (8): e2020778118. Bibcode:2021PNAS..11820778K. doi:10.1073/pnas.2020778118. PMC 7923678. PMID 33593914.
  217. ^ Falkingham PL, Maidment SC, Lallensack JN, Martin JE, Suan G, Cherns L, Howells C, Barrett PM (2021). "Late Triassic dinosaur tracks from Penarth, south Wales". Geological Magazine. 159 (6): 821–832. doi:10.1017/S0016756821001308. S2CID 245586628.
  218. ^ Apaldetti C, Pol D, Ezcurra MD, Martínez RN (2021). "Sauropodomorph evolution across the Triassic–Jurassic boundary: body size, locomotion, and their influence on morphological disparity". Scientific Reports. 11 (1): 22534. Bibcode:2021NatSR..1122534A. doi:10.1038/s41598-021-01120-w. PMC 8602272. PMID 34795322.
  219. ^ Lallensack JN, Teschner EM, Pabst B, Sander PM (2021). "New skulls of the basal sauropodomorph Plateosaurus trossingensis from Frick, Switzerland: Is there more than one species?". Acta Palaeontologica Polonica. 66 (1): 1–28. doi:10.4202/app.00804.2020. S2CID 233264515.
  220. ^ Chapelle KE, Botha J, Choiniere JN (2021). "Extreme growth plasticity in the early branching sauropodomorph Massospondylus carinatus". Biology Letters. 17 (5): Articles ID 20200843. doi:10.1098/rsbl.2020.0843. PMC 8113909. PMID 33975484.
  221. ^ Ren XX, Su X, Wang GF, You HL (2021). "Sedimentological evidence suggests an Early Jurassic age for Yunnanosaurus youngi (Dinosauria: Sauropodomorpha) in Yunnan Province of China". Historical Biology. 34 (9): 1827–1833. doi:10.1080/08912963.2021.1984445. S2CID 244227159.
  222. ^ Fabbri M, Navalón G, Mongiardino Koch N, Hanson M, Petermann H, Bhullar BA (April 2021). "A shift in ontogenetic timing produced the unique sauropod skull". Evolution; International Journal of Organic Evolution. 75 (4): 819–831. doi:10.1111/evo.14190. PMID 33578446. S2CID 231909592.
  223. ^ Pol D, Mancuso AC, Smith RM, Marsicano CA, Ramezani J, Cerda IA, Otero A, Fernandez V (2021). "Earliest evidence of herd-living and age segregation amongst dinosaurs". Scientific Reports. 11 (1): Article number 20023. Bibcode:2021NatSR..1120023P. doi:10.1038/s41598-021-99176-1. PMC 8531321. PMID 34675327.
  224. ^ Goodell Z, Lockley MG, Lucas SG, Schumacher BA, Smith JA, Trujillo R, Xing L (2021). "A high-altitude sauropod trackway site in the Jurassic of Colorado: The longest known consecutive footprint sequence reveals evidence of sharp turning behavior". New Mexico Museum of Natural History and Science Bulletin. 82: 101–112.
  225. ^ Gomez KL, Carballido JL, Pol D (2021). "The axial skeleton of Bagualia alba (Dinosauria: Eusauropoda) from the Early Jurassic of Patagonia". Palaeontologia Electronica. 24 (3): Article number 24.3.37A. doi:10.26879/1176. hdl:11336/166827.
  226. ^ Ma Q, Dai H, Tan C, Li N, Wang P, Ren X, Meng L, Zhao Q, Wei G, Xu X (2021). "New Shunosaurus (Dinosauria: Sauropoda) material from the Middle Jurassic lower Shaximiao Formation of Yunyang, Chongqing, China". Historical Biology. 34 (6): 1085–1099. doi:10.1080/08912963.2021.1962852. S2CID 238657458.
  227. ^ Holwerda FM, Rauhut OW, Pol D (2021). "Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi Bonaparte, 1979 (Sauropoda: Cetiosauridae)". Geodiversitas. 43 (16): 575–643. doi:10.5252/geodiversitas2021v43a16. S2CID 237537773.
  228. ^ Wedel M, Atterholt J, Dooley Jr AC, Farooq S, Macalino J, Nalley TK, Wisser G, Yasmer J (2021). "Expanded neural canals in the caudal vertebrae of a specimen of Haplocanthosaurus". Academia Letters. doi:10.20935/AL911. S2CID 236690010.
  229. ^ Mannion PD, Tschopp E, Whitlock JA (2021). "Anatomy and systematics of the diplodocoid Amphicoelias altus supports high sauropod dinosaur diversity in the Upper Jurassic Morrison Formation of the USA". Royal Society Open Science. 8 (6): Article ID 210377. Bibcode:2021RSOS....810377M. doi:10.1098/rsos.210377. PMC 8206699. PMID 34150318.
  230. ^ Windholz GJ, Cerda IA (2021). "Paleohistology of two dicraeosaurid dinosaurs (Sauropoda; Diplodocoidea) from La Amarga Formation (Barremian–Aptian, Lower Cretaceous), Neuquén Basin, Argentina: Paleobiological implications". Cretaceous Research. 128: Article 104965. Bibcode:2021CrRes.12804965W. doi:10.1016/j.cretres.2021.104965. ISSN 0195-6671.
  231. ^ Gallagher T, Poole J, Schein JP (2021). "Evidence of integumentary scale diversity in the Late Jurassic sauropod Diplodocus sp. from the Mother's Day Quarry, Montana". PeerJ. 9: e11202. doi:10.7717/peerj.11202. PMC 8098675. PMID 33986987.
  232. ^ Garderes JP, Gallina PA, Whitlock JA, Toledo N (2022). "Neuroanatomy of a diplodocid sauropod dinosaur from the Lower Cretaceous of Patagonia, Argentina". Cretaceous Research. 129: Article 105024. Bibcode:2022CrRes.12905024G. doi:10.1016/j.cretres.2021.105024. S2CID 239658409.
  233. ^ Paulina-Carabajal A, Calvo JO (2021). "Re-description of the braincase of the rebbachisaurid sauropod Limaysaurus tessonei and novel endocranial information based on CT scans". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20200762. doi:10.1590/0001-3765202120200762. hdl:11336/183721. PMID 33533794. S2CID 231790118.
  234. ^ Woodruff DC, Wilhite DR, Larson PL, Eads M (2021). "A new specimen of the basal macronarian Camarasaurus (Dinosauria: Sauropoda) highlights variability and cranial allometry within the genus". Volumina Jurassica. 19: 109–130. doi:10.7306/VJ.19.5.
  235. ^ Liao C, Moore A, Jin C, Yang T, Shibata M, Jin F, Wang B, Jin D, Guo Y, Xu X (2021). "A possible brachiosaurid (Dinosauria, Sauropoda) from the mid-Cretaceous of northeastern China". PeerJ. 9: e11957. doi:10.7717/peerj.11957. PMC 8381880. PMID 34484987.
  236. ^ Torcida Fernández-Baldor F, Díaz-Martínez I, Huerta P, Montero Huerta D, Castanera D (2021). "Enigmatic tracks of solitary sauropods roaming an extensive lacustrine megatracksite in Iberia". Scientific Reports. 11 (1): Article number 16939. Bibcode:2021NatSR..1116939T. doi:10.1038/s41598-021-95675-3. PMC 8379178. PMID 34417474.
  237. ^ Chang H, You H, Xu L, Ma W, Gao D, Jia S, Xia M, Zhang J, Li Y, Wang X, Liu D, Li J, Zhang J, Yang L, Wei X (2021). "Relatively low tooth replacement rate in a sauropod dinosaur from the Early Cretaceous Ruyang Basin of central China". PeerJ. 9: e12361. doi:10.7717/peerj.12361. PMC 8556709. PMID 34760377.
  238. ^ Silva Junior JC, Montefeltro FC, Marinho TS, Martinelli AG, Langer MC (2022). "Finite elements analysis suggests a defensive role for osteoderms in titanosaur dinosaurs (Sauropoda)". Cretaceous Research. 129: Article 105031. Bibcode:2022CrRes.12905031S. doi:10.1016/j.cretres.2021.105031. S2CID 239121820.
  239. ^ Poropat SF, Kundrát M, Mannion PD, Upchurch P, Tischler TR, Elliott DA (2021). "Second specimen of the Late Cretaceous Australian sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on the skull and neck of early titanosaurs". Zoological Journal of the Linnean Society. 192 (2): 610–674. doi:10.1093/zoolinnean/zlaa173.
  240. ^ Otero A, Carballido JL, Salgado L, Canudo JI, Garrido AC (12 January 2021). "Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquén Province, Argentina". Cretaceous Research. 122: 104754. Bibcode:2021CrRes.12204754O. doi:10.1016/j.cretres.2021.104754. S2CID 233582290.
  241. ^ Cerda I, Zurriaguz VL, Carballido JL, González R, Salgado L (2021). "Osteology, paleohistology and phylogenetic relationships of Pellegrinisaurus powelli (Dinosauria: Sauropoda) from the Upper Cretaceous of Argentinean Patagonia". Cretaceous Research. 128: 104957. Bibcode:2021CrRes.12804957C. doi:10.1016/j.cretres.2021.104957.
  242. ^ Bellardini F, Windholz GJ, Baiano MA, Garrido AC, Filippi L (2021). "New titanosaur remains from the Portezuelo Formation (Turonian–Coniancian) and their implications for the sauropod faunal diversity of the southern Neuquén Basin, Patagonia, Argentina". Journal of South American Earth Sciences. 111: Article 103457. Bibcode:2021JSAES.11103457B. doi:10.1016/j.jsames.2021.103457.
  243. ^ Pérez Moreno A, Carballido JL, Otero A, Salgado L, Calvo JO (2021). "The axial skeleton of Rinconsaurus caudamirus (Sauropoda: Titanosauria) from the Late Cretaceous of Patagonia, Argentina". Ameghiniana. 59 (1): 1–46. doi:10.5710/AMGH.13.09.2021.3427. ISSN 0002-7014. S2CID 240592543.
  244. ^ Malone JR, Strasser JC, Malone DH, D'Emic MD, Brown L, Craddock JP (2021). "Jurassic dinosaurs on the move: Gastrolith provenance and long-distance migration". Terra Nova. 33 (4): 375–382. Bibcode:2021TeNov..33..375M. doi:10.1111/ter.12522. ISSN 1365-3121. S2CID 233901940.
  245. ^ Averianov AO, Sizov AV, Skutschas PP (2021). "Gondwanan affinities of Tengrisaurus, Early Cretaceous titanosaur from Transbaikalia, Russia (Dinosauria, Sauropoda)". Cretaceous Research. 122: Article 104731. Bibcode:2021CrRes.12204731A. doi:10.1016/j.cretres.2020.104731. S2CID 233539964.
  246. ^ Aureliano T, Ghilardi AM, Navarro BA, Fernandez MA, Ricardi-Branco F, Wedel MJ (2021). "Exquisite air sac histological traces in a hyperpneumatized nanoid sauropod dinosaur from South America". Scientific Reports. 11 (1): Article number 24207. Bibcode:2021NatSR..1124207A. doi:10.1038/s41598-021-03689-8. PMC 8683417. PMID 34921226.
  247. ^ Dhiman H, Dutta S, Kumar S, Verma V, Prasad G (2021). "Discovery of proteinaceous moieties in Late Cretaceous dinosaur eggshell". Palaeontology. 64 (5): 585–595. Bibcode:2021Palgy..64..585D. doi:10.1111/pala.12565.
  248. ^ Leuzinger L, Bernasconi SM, Vennemann T, Luz Z, Vonlanthen P, Ulianov A, Baumgartner-Mora C, Hechenleitner EM, Fiorelli LE, Alasino PH (2021). "Life and reproduction of titanosaurians: Isotopic hallmark of mid-palaeolatitude eggshells and its significance for body temperature, diet, and nesting" (PDF). Chemical Geology. 583: Article 120452. Bibcode:2021ChGeo.58320452L. doi:10.1016/j.chemgeo.2021.120452. S2CID 237674699.
  249. ^ Madzia D, Arbour VM, Boyd CA, Farke AA, Cruzado-Caballero P, Evans DC (2021). "The phylogenetic nomenclature of ornithischian dinosaurs". PeerJ. 9: e12362. doi:10.7717/peerj.12362. PMC 8667728. PMID 34966571.
  250. ^ Rozadilla S, Agnolín F, Manabe M, Tsuihiji T, Novas FE (2021). "Ornithischian remains from the Chorrillo Formation (Upper Cretaceous), southern Patagonia, Argentina, and their Implications on ornithischian paleobiogeography in the southern hemisphere". Cretaceous Research. 125: Article 104881. Bibcode:2021CrRes.12504881R. doi:10.1016/j.cretres.2021.104881.
  251. ^ Wyenberg-Henzler T, Patterson RT, Mallon JC (2022). "Size-mediated competition and community structure in a Late Cretaceous herbivorous dinosaur assemblage". Historical Biology. 34 (11): 2230–2240. Bibcode:2022HBio...34.2230W. doi:10.1080/08912963.2021.2010191. S2CID 245063636.
  252. ^ Radermacher VJ, Fernandez V, Schachner ER, Butler RJ, Bordy EM, Hudgins MN, de Klerk WJ, Chapelle KE, Choiniere JN (2021). "A new Heterodontosaurus specimen elucidates the unique ventilatory macroevolution of ornithischian dinosaurs". eLife. 10: e66036. doi:10.7554/eLife.66036. PMC 8260226. PMID 34225841.
  253. ^ Breeden BT, Raven TJ, Butler RJ, Rowe TB, Maidment SC (2021). "The anatomy and palaeobiology of the early armoured dinosaur Scutellosaurus lawleri (Ornithischia: Thyreophora) from the Kayenta Formation (Lower Jurassic) of Arizona". Royal Society Open Science. 8 (7): Article ID 201676. Bibcode:2021RSOS....801676B. doi:10.1098/rsos.201676. PMC 8292774. PMID 34295511.
  254. ^ Rauhut OW, Carballido JL, Pol D (2021). "First Osteological Record of a Stegosaur (Dinosauria, Ornithischia) from the Upper Jurassic of South America". Journal of Vertebrate Paleontology. 40 (6): e1862133. doi:10.1080/02724634.2020.1862133. S2CID 234161169.
  255. ^ Skutschas PP, Gvozdkova VA, Averianov AO, Lopatin AV, Martin T, Schellhorn R, et al. (2021). "Wear patterns and dental functioning in an Early Cretaceous stegosaur from Yakutia, Eastern Russia". PLOS ONE. 16 (3): e0248163. Bibcode:2021PLoSO..1648163S. doi:10.1371/journal.pone.0248163. PMC 7968641. PMID 33730093.
  256. ^ Xing L, Lockley MG, PERSONS IV WS, Klein H, Romilio A, Wang D, Wang M (2021). "Stegosaur track assemblage from Xinjiang, China, featuring the smallest known stegosaur record". PALAIOS. 36 (2): 68–76. Bibcode:2021Palai..36...68X. doi:10.2110/palo.2020.036. S2CID 233129489.
  257. ^ Russo J, Mateus O (November 2021). "History of the discovery of the ankylosaur Dracopelta zbyszewskii (Upper Jurassic), with new data about the type specimen and its locality" (PDF). Comunicações Geológicas. 108 (1): 27–34. doi:10.34637/dmdm-5w12.
  258. ^ Riguetti F, Citton P, Apesteguía S, Zacarías GG, Pereda-Suberbiola X (2021). "New ankylosaurian trackways (cf. Tetrapodosaurus) from an uppermost Cretaceous level of the El Molino Formation of Bolivia". Cretaceous Research. 124: Article 104810. Bibcode:2021CrRes.12404810R. doi:10.1016/j.cretres.2021.104810. S2CID 233815474.
  259. ^ Ősi A, Magyar J, Rosta K, Vickaryous M (2021). "Cranial ornamentation in the Late Cretaceous nodosaurid ankylosaur Hungarosaurus". PeerJ. 9: e11010. doi:10.7717/peerj.11010. PMC 7936564. PMID 33717709.
  260. ^ Kubo T, Zheng W, Kubo MO, Jin X (2021). "Dental microwear of a basal ankylosaurine dinosaur, Jinyunpelta and its implication on evolution of chewing mechanism in ankylosaurs". PLOS ONE. 16 (3): e0247969. Bibcode:2021PLoSO..1647969K. doi:10.1371/journal.pone.0247969. PMC 7946176. PMID 33690686.
  261. ^ Park JY, Lee YN, Currie PJ, Ryan MJ, Bell P, Sissons R, et al. (March 2021). "A new ankylosaurid skeleton from the Upper Cretaceous Baruungoyot Formation of Mongolia: its implications for ankylosaurid postcranial evolution". Scientific Reports. 11 (1): 4101. doi:10.1038/s41598-021-83568-4. PMC 7973727. PMID 33737515.
  262. ^ Barta DE, Norell MA (2021). "The osteology of Haya griva (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia". Bulletin of the American Museum of Natural History. 445: 1–112. doi:10.1206/0003-0090.445.1.1. hdl:2246/7253. S2CID 232059318.
  263. ^ Duncan RJ, Evans AR, Vickers-Rich P, Rich TH, Poropat SF (2021). "Ornithopod jaws from the Lower Cretaceous Eumeralla Formation, Victoria, Australia, and their implications for polar neornithischian dinosaur diversity". Journal of Vertebrate Paleontology. 41 (3): e1946551. Bibcode:2021JVPal..41E6551D. doi:10.1080/02724634.2021.1946551. S2CID 238672791.
  264. ^ Hunt TC, Cifelli RL, Davies KL (2021). "The hand of Tenontosaurus tilletti (Dinosauria, Ornithopoda)". Journal of Vertebrate Paleontology. 41 (2): e1938591. Bibcode:2021JVPal..41E8591H. doi:10.1080/02724634.2021.1938591. S2CID 237517997.
  265. ^ Hübner TR, Foth C, Heinrich WD, Schwarz D, Bussert R (2021). "Research history, taphonomy, and age structure of a mass accumulation of the ornithopod dinosaur Dysalotosaurus lettowvorbecki from the Upper Jurassic of Tanzania". Acta Palaeontologica Polonica. 66 (2): 275–300. doi:10.4202/app.00687.2019. S2CID 236713607.
  266. ^ Knoll F, Lautenschlager S, Kawabe S, Martínez G, Espílez E, Mampel L, Alcalá L (2021). "Palaeoneurology of the Early Cretaceous iguanodont Proa valdearinnoensis and its bearing on the parallel developments of cognitive abilities in theropod and ornithopod dinosaurs". Journal of Comparative Neurology. 529 (18): 3922–3945. doi:10.1002/cne.25224. hdl:10261/250160. PMID 34333763. S2CID 236774128.
  267. ^ Słowiak J, Szczygielski T, Rothschild BM, Surmik D (2021). "Dinosaur senescence: a hadrosauroid with age-related diseases brings a new perspective of "old" dinosaurs". Scientific Reports. 11 (1): Article number 11947. Bibcode:2021NatSR..1111947S. doi:10.1038/s41598-021-91366-1. PMC 8196189. PMID 34117305.
  268. ^ Gates TA, Lamb J (2021). "Redescription of Lophorhothon atopus (Ornithopoda: Dinosauria) from the Late Cretaceous of Alabama based on new material". Canadian Journal of Earth Sciences. 58 (9): 918–935. Bibcode:2021CaJES..58..918G. doi:10.1139/cjes-2020-0173. S2CID 234293555.
  269. ^ Borinder NH, Poropat SF, Campione NE, Wigren T, Kear BP (2021). "Postcranial osteology of the basally branching hadrosauroid dinosaur Tanius sinensis from the Upper Cretaceous Wangshi Group of Shandong, China". Journal of Vertebrate Paleontology. 41 (1): e1914642. Bibcode:2021JVPal..41E4642B. doi:10.1080/02724634.2021.1914642. S2CID 235364845.
  270. ^ Chiarenza AA, Fabbri M, Consorti L, Muscioni M, Evans DC, Cantalapiedra JL, Fanti F (2021). "An Italian dinosaur Lagerstätte reveals the tempo and mode of hadrosauriform body size evolution". Scientific Reports. 11 (1): Article number 23295. Bibcode:2021NatSR..1123295C. doi:10.1038/s41598-021-02490-x. PMC 8640049. PMID 34857789.
  271. ^ Ibiricu LM, Casal GA, Alvarez BN, De Sosa Tomas A, Lamanna MC, Cruzado-Caballero P (2021). "New hadrosaurid (Dinosauria: Ornithopoda) fossils from the uppermost Cretaceous of central Patagonia and the influence of paleoenvironment on South American hadrosaur distribution". Journal of South American Earth Sciences. 110: Article 103369. Bibcode:2021JSAES.11003369I. doi:10.1016/j.jsames.2021.103369.
  272. ^ Holland B, Bell PR, Fanti F, Hamilton SM, Larson DW, Sissons R, Sullivan C, Vavrek MJ, Wang Y, Campione NE (2021). "Taphonomy and taxonomy of a juvenile lambeosaurine (Ornithischia: Hadrosauridae) bonebed from the late Campanian Wapiti Formation of northwestern Alberta, Canada". PeerJ. 9: e11290. doi:10.7717/peerj.11290. PMC 8103918. PMID 33987001.
  273. ^ Ramírez-Velasco ÁA, Espinosa-Arrubarrena L, Alvarado-Ortega J (2021). "Review of the taxonomic affinities of Latirhinus uitstlani, an emblematic Mexican hadrosaurid". Journal of South American Earth Sciences. 110: Article 103391. Bibcode:2021JSAES.11003391R. doi:10.1016/j.jsames.2021.103391.
  274. ^ Serrano-Brañas CI, Prieto-Márquez A (2021). "Taphonomic attributes of the holotype of the lambeosaurine dinosaur Latirhinus uitstlani from the late Campanian of Mexico: Implications for its phylogenetic systematic". Journal of South American Earth Sciences. 114: Article 103689. doi:10.1016/j.jsames.2021.103689.
  275. ^ Gates TA, Evans DC, Sertich JJ (2021). "Description and rediagnosis of the crested hadrosaurid (Ornithopoda) dinosaur Parasaurolophus cyrtocristatus on the basis of new cranial remains". PeerJ. 9: e10669. doi:10.7717/peerj.10669. PMC 7842145. PMID 33552721.
  276. ^ Cruzado-Caballero P, Lecuona A, Cerda I, Díaz-Martínez I (2021). "Osseous paleopathologies of Bonapartesaurus rionegrensis (Ornithopoda, Hadrosauridae) from Allen Formation (Upper Cretaceous) of Patagonia Argentina". Cretaceous Research. 124: Article 104800. Bibcode:2021CrRes.12404800C. doi:10.1016/j.cretres.2021.104800. hdl:11336/183883. S2CID 233648171.
  277. ^ McFeeters B, Evans DC, Maddin HV (2021). "Ontogeny and variation in the skull roof and braincase of the hadrosaurid dinosaur Maiasaura peeblesorum from the Upper Cretaceous of Montana, USA". Acta Palaeontologica Polonica. 66 (3): 485–507. doi:10.4202/app.00698.2019. S2CID 239729209.
  278. ^ Woodruff DC, Goodwin MB, Lyson TR, Evans DC (2021). "Ontogeny and variation of the pachycephalosaurine dinosaur Sphaerotholus buchholtzae, and its systematics within the genus". Zoological Journal of the Linnean Society. 193 (2): 563–601. doi:10.1093/zoolinnean/zlaa179.
  279. ^ Vinther J, Nicholls R, Kelly DA (February 2021). "A cloacal opening in a non-avian dinosaur". Current Biology. 31 (4): R182–R183. Bibcode:2021CBio...31.R182V. doi:10.1016/j.cub.2020.12.039. PMID 33472049. S2CID 231644183.
  280. ^ Landi D, King L, Zhao Q, Rayfield EJ, Benton MJ (2021). "Testing for a dietary shift in the Early Cretaceous ceratopsian dinosaur Psittacosaurus lujiatunensis" (PDF). Palaeontology. 64 (3): 371–384. Bibcode:2021Palgy..64..371L. doi:10.1111/pala.12529. S2CID 233689632.
  281. ^ Skutschas PP, Morozov SS, Averianov AO, Leshchinskiy SV, Ivantsov SV, Fayngerts AV, Feofanova OA, Vladimirova ON, Slobodin DA (2021). "Femoral histology and growth patterns of the ceratopsian dinosaur Psittacosaurus sibiricus from the Early Cretaceous of Western Siberia" (PDF). Acta Palaeontologica Polonica. 66 (2): 437–447. doi:10.4202/app.00819.2020. S2CID 237336322.
  282. ^ Knapp A, Knell RJ, Hone DW (February 2021). "Three-dimensional geometric morphometric analysis of the skull of Protoceratops andrewsi supports a socio-sexual signalling role for the ceratopsian frill". Proceedings. Biological Sciences. 288 (1944): 20202938. doi:10.1098/rspb.2020.2938. PMC 7893235. PMID 33529562.
  283. ^ Tereshchenko VS (2021). "Axial Skeleton of Subadult Protoceratops andrewsi from Djadokhta Formation (Upper Cretaceous, Mongolia)". Paleontological Journal. 55 (12): 1408–1457. Bibcode:2021PalJ...55.1408T. doi:10.1134/S0031030121120030. S2CID 247387644.
  284. ^ Wilson JP, Scannella JB (2021). "Comparative cranial osteology of subadult eucentrosauran ceratopsid dinosaurs from the Two Medicine Formation, Montana, indicates sequence of ornamentation development and complex supraorbital ontogenetic change". Acta Palaeontologica Polonica. 66 (4): 797–814. doi:10.4202/app.00797.2020. S2CID 245247322.
  285. ^ Hudgins MN, Currie PJ, Sullivan C (2021). "Dental assessment of Stegoceras validum (Ornithischia: Pachycephalosauridae) and Thescelosaurus neglectus (Ornithischia: Thescelosauridae): paleoecological inferences". Cretaceous Research. 130: Article 105058. doi:10.1016/j.cretres.2021.105058. ISSN 0195-6671. S2CID 239253658.
  286. ^ Maidment SC, Dean CD, Mansergh RI, Butler RJ (2021). "Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America". Proceedings of the Royal Society B: Biological Sciences. 288 (1953): Article ID 20210692. doi:10.1098/rspb.2021.0692. PMC 8220268. PMID 34157868.
  287. ^ Tennyson AJ, Tomotani BM (2021). "A new fossil species of kiwi (Aves: Apterygidae) from the mid-Pleistocene of New Zealand". Historical Biology. 34 (2): 352–360. doi:10.1080/08912963.2021.1916011. hdl:20.500.11755/f6d93ef4-368b-479e-907f-7b21bc0430e4. S2CID 234352900.
  288. ^ Mather EK, Lee MS, Camens AB, Worthy TH (2021). "An exceptional partial skeleton of a new basal raptor (Aves: Accipitridae) from the late Oligocene Namba formation, South Australia". Historical Biology. 34 (7): 1175–1207. doi:10.1080/08912963.2021.1966777.
  289. ^ Mayr G (2021). "An early Eocene fossil from the British London Clay elucidates the evolutionary history of the enigmatic Archaeotrogonidae (Aves, Strisores)". Papers in Palaeontology. 7 (4): 2049–2064. Bibcode:2021PPal....7.2049M. doi:10.1002/spp2.1392. S2CID 237673513.
  290. ^ a b c Campbell KE, Bocheński ZM (2021). "A review of the woodpeckers (Aves: Piciformes) from the asphalt deposits of Rancho La Brea, California, with the description of three new species". Palaeobiodiversity and Palaeoenvironments. 101 (4): 1013–1026. Bibcode:2021PdPe..101.1013C. doi:10.1007/s12549-020-00444-1. S2CID 231716382.
  291. ^ a b O'Connor JK, Stidham TA, Harris JD, Lamanna MC, Bailleul AM, Hu H, Wang M, You H (2022). "Avian skulls represent a diverse ornithuromorph fauna from the Lower Cretaceous Xiagou Formation, Gansu Province, China". Journal of Systematics and Evolution. 60 (5): 1172–1198. doi:10.1111/jse.12823. S2CID 245586113.
  292. ^ Li Z, Wang M, Stidham TA, Zhou Z, Clarke J (2021). "Novel evolution of a hyper-elongated tongue in a Cretaceous enantiornithine from China and the evolution of the hyolingual apparatus and feeding in birds". Journal of Anatomy. 240 (4): 627–638. doi:10.1111/joa.13588. PMC 8930807. PMID 34854094. S2CID 244860443.
  293. ^ Zelenkov NV (2021). "A revision of the Palaeocene-Eocene Mongolian Presbyornithidae (Aves: Anseriformes)". Paleontological Journal. 55 (3): 323–330. Bibcode:2021PalJ...55..323Z. doi:10.1134/S0031030121030138. S2CID 235966578.
  294. ^ a b c d Zelenkov NV (2021). "New bird taxa (Aves: Galliformes, Gruiformes) from the early Eocene of Mongolia". Paleontological Journal. 55 (4): 438–446. Bibcode:2021PalJ...55..438Z. doi:10.1134/S0031030121040158. S2CID 237377595.
  295. ^ Degrange FJ, Tambussi CP, Taglioretti ML, Scaglia FA (2021). "A new buzzard from the late Pliocene of Argentina". Acta Palaeontologica Polonica. 66 (4): 779–787. doi:10.4202/app.00933.2021. hdl:11336/171795.
  296. ^ Suárez W, Olson SL (2021). "A new fossil raptor (Accipitridae: Buteogallus) from Quaternary cave deposits in Cuba and Hispaniola, West Indies". Bulletin of the British Ornithologists' Club. 141 (3): 256–266. doi:10.25226/bboc.v141i3.2021.a3. S2CID 237456822.
  297. ^ Bocheński ZM, Tomek T, Bujoczek M, Salwa G (2021). "A new passeriform (Aves: Passeriformes) from the early Oligocene of Poland sheds light on the beginnings of Suboscines". Journal of Ornithology. 162 (2): 593–604. doi:10.1007/s10336-021-01858-0. S2CID 233416728.
  298. ^ El Adli JJ, Wilson Mantilla JA, Antar MS, Gingerich PD (2021). "The earliest recorded fossil pelican, recovered from the late Eocene of Wadi Al-Hitan, Egypt". Journal of Vertebrate Paleontology. 41 (1): e1903910. Bibcode:2021JVPal..41E3910E. doi:10.1080/02724634.2021.1903910. S2CID 236269386.
  299. ^ Clark AD, O'Connor JK (2021). "Exploring the Ecomorphology of Two Cretaceous Enantiornithines With Unique Pedal Morphology". Frontiers in Ecology and Evolution. 9: Article 654156. doi:10.3389/fevo.2021.654156.
  300. ^ Salvador RB, Anderson A, Tennyson AJ (2021). "An Extinct New Rail (Gallirallus, Aves: Rallidae) Species from Rapa Island, French Polynesia". Taxonomy. 1 (4): 448–457. doi:10.3390/taxonomy1040032.
  301. ^ Giovanardi S, Ksepka DT, Thomas DB (2021). "A giant Oligocene fossil penguin from the North Island of New Zealand". Journal of Vertebrate Paleontology. 41 (3): e1953047. Bibcode:2021JVPal..41E3047G. doi:10.1080/02724634.2021.1953047. S2CID 240533653.
  302. ^ Gerald Mayr; James L. Goedert (2011). "New late Eocene and Oligocene plotopterid fossils from Washington State (USA), with a revision of "Tonsala" buchanani (Aves, Plotopteridae)". Journal of Paleontology. 96: 1–13. doi:10.1017/jpa.2021.81. S2CID 240582610.
  303. ^ Dyke, G.; Wang, Wang; Habib, M. (2011). "Fossil Plotopterid Seabirds from the Eo-Oligocene of the Olympic Peninsula (Washington State, USA): Descriptions and Functional Morphology". PLOS ONE. 6 (10): e25672. Bibcode:2011PLoSO...625672D. doi:10.1371/journal.pone.0025672. PMC 3204969. PMID 22065992.
  304. ^ Carvalho IS, Agnolin FL, Rozadilla S, Novas FE, Andrade JA, Xavier-Neto J (2021). "A new ornithuromorph bird from the Lower Cretaceous of South America". Journal of Vertebrate Paleontology. 41 (4): e1988623. Bibcode:2021JVPal..41E8623C. doi:10.1080/02724634.2021.1988623. S2CID 244059488.
  305. ^ Worthy TH, Scofield RP, Salisbury SW, Hand SJ, De Pietri VL, Blokland JC, Archer M (2021). "A new species of Manuherikia (Aves: Anatidae) provides evidence of faunal turnover in the St Bathans fauna, New Zealand". Geobios. 70: 87–107. doi:10.1016/j.geobios.2021.08.002. S2CID 245157909.
  306. ^ Jadwiszczak P, Reguero M, Mörs T (2021). "A new small-sized penguin from the late Eocene of Seymour Island with additional material of Mesetaornis polaris". GFF. 143 (2–3): 283–291. Bibcode:2021GFF...143..283J. doi:10.1080/11035897.2021.1900385.
  307. ^ Zelenkov NV, González SF (2021). "A new extinct species of Margarobyas (Strigiformes) and the evolutionary history of the endemic Cuban bare-legged owl (M. lawrencii)". Journal of Vertebrate Paleontology. 41 (4): e1995869. Bibcode:2021JVPal..41E5869Z. doi:10.1080/02724634.2021.1995869. S2CID 245138345.
  308. ^ Wang JY, Wang XR, Guo B, Kang A, Ma FM, Ju SB (2021). "A new jeholornithiform identified from the Early Cretaceous Jiufotang Formation in western Liaoning". Geological Bulletin of China (in Chinese). 40 (9): 1419–1427.
  309. ^ Louchart A, Duhamel A (2021). "A new fossil from the early Oligocene of Provence (France) increases the diversity of early Gruoidea and adds constraint on the origin of cranes (Gruidae) and limpkin (Aramidae)" (PDF). Journal of Ornithology. 162 (4): 977–986. doi:10.1007/s10336-021-01891-z. S2CID 235533084.
  310. ^ Mayr G (2021). "A remarkably complete skeleton from the London Clay provides insights into the morphology and diversity of early Eocene zygodactyl near-passerine birds". Journal of Systematic Palaeontology. 18 (22): 1891–1906. doi:10.1080/14772019.2020.1862930. S2CID 231636890.
  311. ^ Boev ZN (2021). "An Early Pleistocene magpie (Pica praepica sp. n.) (Corvidae Leach, 1820) from Bulgaria". Bulletin of the Natural History Museum - Plovdiv. 6: 51–59.
  312. ^ Tennyson AJ, Tomotani BM (2021). "A new fossil species of Procellaria (Aves: Procellariiformes) from the Pliocene of New Zealand". Papéis Avulsos de Zoologia. 61: e20216116. doi:10.11606/1807-0205/2021.61.16. S2CID 234091690.
  313. ^ Mayr M (2021). "A partial skeleton of a new species of Tynskya Mayr, 2000 (Aves, Messelasturidae) from the London Clay highlights the osteological distinctness of a poorly known early Eocene "owl/parrot mosaic"". PalZ. 95 (2): 337–357. Bibcode:2021PalZ...95..337M. doi:10.1007/s12542-020-00541-8.
  314. ^ Degrange FJ, Pol D, Puerta P, Wilf P (January 2021). "Unexpected larger distribution of paleogene stem-rollers (AVES, CORACII): new evidence from the Eocene of Patagonia, Argentina". Scientific Reports. 11 (1): 1363. Bibcode:2021NatSR..11.1363D. doi:10.1038/s41598-020-80479-8. PMC 7809110. PMID 33446824.
  315. ^ Claudia P. Tambussi; Federico J. Degrange; Patricia L. Ciccioli; Francisco Prevosti (2020). "Avian remains from the Toro Negro Formation (Neogene), Central Andes of Argentina". Journal of South American Earth Sciences. 105: Article 102988. doi:10.1016/j.jsames.2020.102988. hdl:11336/141200. S2CID 228810485.
  316. ^ Wang M, O'Connor JK, Zhao T, Pan Y, Zheng X, Wang X, Zhou Z (2021). "An Early Cretaceous enantiornithine bird with a pintail". Current Biology. 31 (21): 4845–4852.e2. Bibcode:2021CBio...31E4845W. doi:10.1016/j.cub.2021.08.044. PMID 34534442. S2CID 237541123.
  317. ^ Xu L, Buffetaut E, O'Connor J, Zhang X, Jia S, Zhang J, Chang H, Tong H (2021). "A new, remarkably preserved, enantiornithine bird from the Upper Cretaceous Qiupa Formation of Henan (central China) and convergent evolution between enantiornithines and modern birds". Geological Magazine. 158 (11): 2087–2094. Bibcode:2021GeoM..158.2087X. doi:10.1017/S0016756821000807. S2CID 238748196.
  318. ^ Pei R, Pittman M, Goloboff PA, Dececchi TA, Habib MB, Kaye TG, et al. (October 2020). "Potential for Powered Flight Neared by Most Close Avialan Relatives, but Few Crossed Its Thresholds". Current Biology. 30 (20): 4033–4046.e8. Bibcode:2020CBio...30E4033P. doi:10.1016/j.cub.2020.06.105. hdl:11336/143103. PMID 32763170. S2CID 221015472.
  319. ^ Serrano FJ, Chiappe LM (2021). "Independent origins of powered flight in paravian dinosaurs?". Current Biology. 31 (8): R370–R372. Bibcode:2021CBio...31.R370S. doi:10.1016/j.cub.2021.03.058. hdl:10630/32667. PMID 33905689. S2CID 233428158.
  320. ^ Pittman M, Habib MB, Dececchi TA, Larsson HC, Pei R, Kaye TG, et al. (2021). "Response to Serrano and Chiappe". Current Biology. 31 (8): R372–R373. Bibcode:2021CBio...31.R372P. doi:10.1016/j.cub.2021.03.059. PMID 33905690. S2CID 233429338.
  321. ^ Nebreda SM, Hernández Fernández M, Marugán-Lobón J (2021). "'Dinosaur-bird' macroevolution, locomotor modules and the origins of flight". Journal of Iberian Geology. 47 (3): 565–574. Bibcode:2021JIbG...47..565N. doi:10.1007/s41513-021-00170-3. hdl:10486/700623. ISSN 1698-6180.
  322. ^ Yu Y, Zhang C, Xu X (March 2021). "Deep time diversity and the early radiations of birds". Proceedings of the National Academy of Sciences of the United States of America. 118 (10): e2019865118. Bibcode:2021PNAS..11819865Y. doi:10.1073/pnas.2019865118. PMC 7958206. PMID 33619176.
  323. ^ Watanabe A, Balanoff AM, Gignac PM, Gold ME, Norell MA (2021). "Novel neuroanatomical integration and scaling define avian brain shape evolution and development". eLife. 10: e68809. doi:10.7554/eLife.68809. PMC 8260227. PMID 34227464.
  324. ^ Wu Y (2021). "Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds". Communications Biology. 4 (1): Article number 547. doi:10.1038/s42003-021-02067-4. PMC 8119460. PMID 33986452.
  325. ^ Miller CV, Pittman M (2021). "The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction". Biological Reviews. 96 (5): 2058–2112. doi:10.1111/brv.12743. PMC 8519158. PMID 34240530. S2CID 235775809.
  326. ^ Wang M, Lloyd GT, Zhang C, Zhou Z (February 2021). "The patterns and modes of the evolution of disparity in Mesozoic birds". Proceedings. Biological Sciences. 288 (1944): 20203105. doi:10.1098/rspb.2020.3105. PMC 7893231. PMID 33529566.
  327. ^ Zhou YC, Sullivan C, Zhou ZH, Zhang FC (2021). "Evolution of tooth crown shape in Mesozoic birds, and its adaptive significance with respect to diet". Palaeoworld. 30 (4): 724–736. doi:10.1016/j.palwor.2020.12.008. S2CID 234117375.
  328. ^ Brocklehurst N, Field DJ (March 2021). "Macroevolutionary dynamics of dentition in Mesozoic birds reveal no long-term selection towards tooth loss". iScience. 24 (3): 102243. Bibcode:2021iSci...24j2243B. doi:10.1016/j.isci.2021.102243. PMC 7973866. PMID 33763634.
  329. ^ Monfroy QT, Kundrát M (2021). "The osteohistological variability in the evolution of basal avialans". Acta Zoologica. 103 (1): 1–28. doi:10.1111/azo.12396. S2CID 237806144.
  330. ^ Bell A, Marugán-Lobón J, Navalón G, Nebreda SM, DiGuildo J, Chiappe LM (2021). "Quantitative Analysis of Morphometric Data of Pre-modern Birds: Phylogenetic Versus Ecological Signal". Frontiers in Earth Science. 9: Article 663342. Bibcode:2021FrEaS...9..534B. doi:10.3389/feart.2021.663342. hdl:10486/705668.
  331. ^ Kaye TG, Pittman M, Wahl WR (2020). "Archaeopteryx feather sheaths reveal sequential center-out flight-related molting strategy". Communications Biology. 3 (1): Article number 745. doi:10.1038/s42003-020-01467-2. PMC 7722847. PMID 33293660.
  332. ^ Kiat Y, Pyle P, Balaban A, O'Connor JK (2021). "Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx". Communications Biology. 4 (1): Article number 837. doi:10.1038/s42003-021-02349-x. PMC 8257594. PMID 34226661. S2CID 235738230.
  333. ^ Kaye TG, Pittman M (2021). "Reply to: Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx". Communications Biology. 4 (1): Article number 839. doi:10.1038/s42003-021-02367-9. PMC 8257677. PMID 34226634. S2CID 235738222.
  334. ^ Bailleul AM, Zhou Z (2021). "SEM Analyses of Fossilized Chondrocytes in the Extinct Birds Yanornis and Confuciusornis: Insights on Taphonomy and Modes of Preservation in the Jehol Biota". Frontiers in Earth Science. 9: Article 718588. Bibcode:2021FrEaS...9..694B. doi:10.3389/feart.2021.718588.
  335. ^ Pan Y, Li Z, Wang M, Zhao T, Wang X, Zheng X (2021). "Unambiguous evidence of brilliant iridescent feather color from hollow melanosomes in an Early Cretaceous bird". National Science Review. 9 (2): nwab227. doi:10.1093/nsr/nwab227. PMC 8824705. PMID 35145706.
  336. ^ Wu Q, Bailleul AM, Li Z, O'Connor JK, Zhou Z (2021). "Osteohistology of the Scapulocoracoid of Confuciusornis and Preliminary Analysis of the Shoulder Joint in Aves". Frontiers in Earth Science. 9: Article 617124. Bibcode:2021FrEaS...9..252W. doi:10.3389/feart.2021.617124. S2CID 233216074.
  337. ^ Wang M, Stidham TA, Li Z, Xu X, Zhou Z (2021). "Cretaceous bird with dinosaur skull sheds light on avian cranial evolution". Nature Communications. 12 (1): Article number 3890. Bibcode:2021NatCo..12.3890W. doi:10.1038/s41467-021-24147-z. PMC 8222284. PMID 34162868.
  338. ^ Wu YH, Chiappe LM, Bottjer DJ, Nava W, Martinelli AG (2021). "Dental replacement in Mesozoic birds: evidence from newly discovered Brazilian enantiornithines". Scientific Reports. 11 (1): Article number 19349. Bibcode:2021NatSR..1119349W. doi:10.1038/s41598-021-98335-8. PMC 8484441. PMID 34593843.
  339. ^ Cubo J, Buscalioni AD, Legendre LJ, Bourdon E, Sanz JL, de Ricqlès A (2021). "Palaeohistological inferences of resting metabolic rates in Concornis and Iberomesornis (Enantiornithes, Ornithothoraces) from the Lower Cretaceous of Las Hoyas (Spain)". Palaeontology. 65. doi:10.1111/pala.12583. S2CID 245082389.
  340. ^ Stidham TA, O'Connor JK (2021). "The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China". Journal of Anatomy. 239 (5): 1066–1074. doi:10.1111/joa.13487. PMC 8546525. PMID 34137030. S2CID 235462145.
  341. ^ Liu D, Chiappe LM, Wu B, Meng Q, Zhang Y, Qiu R, Xing H, Zeng Z (2022). "Cranial and dental morphology in a bohaiornithid enantiornithine with information on its tooth replacement pattern". Cretaceous Research. 129: Article 105021. Bibcode:2022CrRes.12905021L. doi:10.1016/j.cretres.2021.105021. S2CID 239630226.
  342. ^ Liu S, Li Z, Bailleul AM, Wang M, O'Connor J (2021). "Investigating Possible Gastroliths in a Referred Specimen of Bohaiornis guoi (Aves: Enantiornithes)". Frontiers in Earth Science. 9: Article 635727. Bibcode:2021FrEaS...9...62L. doi:10.3389/feart.2021.635727. S2CID 231956411.
  343. ^ Atterholt J, Poust AW, Erickson GM, O'Connor JK (2021). "Intraskeletal Osteohistovariability Reveals Complex Growth Strategies in a Late Cretaceous Enantiornithine". Frontiers in Earth Science. 9: Article 640220. Bibcode:2021FrEaS...9..118A. doi:10.3389/feart.2021.640220. S2CID 232313411.
  344. ^ Foth C, Wang S, Spindler F, Lin Y, Rui Y (2021). "A Juvenile Specimen of Archaeorhynchus Sheds New Light on the Ontogeny of Basal Euornithines". Frontiers in Earth Science. 9: Article 604520. Bibcode:2021FrEaS...9..149F. doi:10.3389/feart.2021.604520. S2CID 233245857.
  345. ^ Monfroy QT, Kundrát M, Uesugi K, Hoshino M (2021). "Dichotomy in formation and growth of bones of Yanornis martini (Pygostylia, Ornithuromorpha): study of thermal regime in an extinct bird". Historical Biology. 34 (6): 1039–1062. doi:10.1080/08912963.2021.1960323. S2CID 238739475.
  346. ^ Ju S, Wang X, Liu Y, Wang Y (2021). "A reassessment of Iteravis huchzermeyeri and Gansus zheni from the Jehol Biota in western Liaoning, China". China Geology. 4 (2): 197–204. Bibcode:2021CGeo....4..197J. doi:10.31035/cg2020066. S2CID 234992401.
  347. ^ Monfroy QT, Kundrát M, O'Connor JK, You HL, Marone F, Stampanoni M, Šmajda B (2023). "Synchrotron microtomography-based osteohistology of Gansus yumenensis: new data on the evolution of uninterrupted bone deposition in basal birds". Acta Zoologica. 104 (2): 149–175. doi:10.1111/azo.12402. S2CID 238322919.
  348. ^ Pérez-Pueyo M, Cruzado-Caballero P, Moreno-Azanza M, Vila B, Castanera D, Gasca JM, Puértolas-Pascual E, Bádenas B, Canudo JI (2021). "First record of a giant bird (Ornithuromorpha) from the uppermost Maastrichtian of the Southern Pyrenees, northeast Spain". Journal of Vertebrate Paleontology. 41 (1): e1900210. Bibcode:2021JVPal..41E0210P. doi:10.1080/02724634.2021.1900210. S2CID 235506488.
  349. ^ Torres CR, Norell MA, Clarke JA (2021). "Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: The avian brain shape left other dinosaurs behind". Science Advances. 7 (31): eabg7099. Bibcode:2021SciA....7.7099T. doi:10.1126/sciadv.abg7099. PMC 8324052. PMID 34330706.
  350. ^ Acosta Hospitaleche C, Worthy TH (2021). "New data on the Vegavis iaai holotype from the Maastrichtian of Antarctica". Cretaceous Research. 124: Article 104818. Bibcode:2021CrRes.12404818A. doi:10.1016/j.cretres.2021.104818. S2CID 233703816.
  351. ^ Mayr G, Zelenkov N (2021). "Extinct crane-like birds (Eogruidae and Ergilornithidae) from the Cenozoic of Central Asia are indeed ostrich precursors". Ornithology. 138 (4): ukab048. doi:10.1093/ornithology/ukab048.
  352. ^ Li ZH, Bailleul AM, Stidham TA, Wang M, Deng T (2021). "Exceptional preservation of an extinct ostrich from the Late Miocene Linxia Basin of China". Vertebrata PalAsiatica. 59 (3): 229–244. doi:10.19615/j.cnki.1000-3118.210309.
  353. ^ Buffetaut E, Angst D (2021). "A giant ostrich from the Lower Pleistocene Nihewan Formation of North China, with a review of the fossil ostriches of China". Diversity. 13 (2): Article 47. doi:10.3390/d13020047. hdl:1983/0d3c1bba-d496-47b6-a61c-e141a472612a.
  354. ^ Almeida FC, Porzecanski AL, Cracraft JL, Bertelli S (2021). "The evolution of tinamous (Palaeognathae: Tinamidae) in light of molecular and combined analyses". Zoological Journal of the Linnean Society. 195: 106–124. doi:10.1093/zoolinnean/zlab080.
  355. ^ Wood JR, Vermeulen MJ, Bolstridge N, Briden S, Cole TL, Rivera-Perez J, Shepherd LD, Rawlence NJ, Wilmshurst JM (2021). "Mid-Holocene coprolites from southern New Zealand provide new insights into the diet and ecology of the extinct little bush moa (Anomalopteryx didiformis)". Quaternary Science Reviews. 263: Article 106992. Bibcode:2021QSRv..26306992W. doi:10.1016/j.quascirev.2021.106992. S2CID 236227836.
  356. ^ Hume JP, Robertson C (2021). "Eggs of extinct dwarf island emus retained large size". Biology Letters. 17 (5): Article ID 20210012. doi:10.1098/rsbl.2021.0012. PMC 8150009. PMID 34034528.
  357. ^ Agnolin FL (2021). "Reappraisal on the Phylogenetic Relationships of the Enigmatic Flightless Bird (Brontornis burmeisteri) Moreno and Mercerat, 1891". Diversity. 13 (2): Article 90. doi:10.3390/d13020090.
  358. ^ Louchart A, Bhullar BA, Riamon S, Field DJ (2021). "The True Identity of Putative Tooth Alveoli in a Cenozoic Crown Bird, the Gastornithid Omorhamphus". Frontiers in Earth Science. 9: Article 661699. Bibcode:2021FrEaS...9..333L. doi:10.3389/feart.2021.661699. S2CID 234487888.
  359. ^ Handley WD, Worthy TH (2021). "Endocranial Anatomy of the Giant Extinct Australian Mihirung Birds (Aves, Dromornithidae)". Diversity. 13 (3): Article 124. doi:10.3390/d13030124.
  360. ^ Chinsamy A, Worthy TH (2021). "Histovariability and Palaeobiological Implications of the Bone Histology of the Dromornithid, Genyornis newtoni". Diversity. 13 (5): Article 219. doi:10.3390/d13050219. hdl:11427/35239.
  361. ^ McInerney PL, Arnold LJ, Burke C, Camens AB, Worthy TH (2021). "Multiple occurrences of pathologies suggesting a common and severe bone infection in a population of the Australian Pleistocene giant, Genyornis newtoni (Aves, Dromornithidae)". Papers in Palaeontology. 8. doi:10.1002/spp2.1415. S2CID 245257837.
  362. ^ Vezzosi RI, Jones W, Gaudioso PJ, Barquez RM (2021). "A Patagonian swan (Anatidae: Anserinae) from the Upper Pleistocene of Austral Chaco (Argentina)". Revista Brasileira de Paleontologia. 24 (4): 369–379. doi:10.4072/rbp.2021.4.07. S2CID 247098582.
  363. ^ Mayr G, Goedert JL, Rabenstein R (2021). "Cranium of an Eocene/Oligocene pheasant-sized galliform bird from western North America, with the description of a vascular autapomorphy of the Galliformes". Journal of Ornithology. 163: 315–326. doi:10.1007/s10336-021-01935-4.
  364. ^ Shen W, Stidham TA, Li ZH (2021). "Reexamination of the oldest pigeon (Aves: Columbidae) from Asia: Columba congi from the Early Pleistocene of Zhoukoudian, Beijing, China". Vertebrata PalAsiatica. 59 (3): 245–256. doi:10.19615/j.cnki.1000-3118.210304.
  365. ^ Heingård M, Musser G, Hall SA, Clarke JA (2021). "New Remains of Scandiavis mikkelseni Inform Avian Phylogenetic Relationships and Brain Evolution". Diversity. 13 (12): Article 651. doi:10.3390/d13120651.
  366. ^ Oswald JA, Terrill RS, Stucky BJ, LeFebvre MJ, Steadman DW, Guralnick RP, Allen JM (March 2021). "Ancient DNA from the extinct Haitian cave-rail (Nesotrochis steganinos) suggests a biogeographic connection between the Caribbean and Old World". Biology Letters. 17 (3): 20200760. doi:10.1098/rsbl.2020.0760. PMC 8086980. PMID 33726563. S2CID 232245569.
  367. ^ Watanabe, Junya; Field, Daniel J.; Matsuoka, Hiroshige (2021). "Wing Musculature Reconstruction in Extinct Flightless Auks (Pinguinus and Mancalla) Reveals Incomplete Convergence with Penguins (Spheniscidae) Due to Differing Ancestral States". Integrative Organismal Biology. 3 (1): obaa040. doi:10.1093/iob/obaa040. PMC 8271220. PMID 34258512.
  368. ^ Mori H, Miyata K (2021). "Early Plotopteridae Specimens (Aves) from the Itanoura and Kakinoura Formations (Latest Eocene to Early Oligocene), Saikai, Nagasaki Prefecture, Western Japan". Paleontological Research. 25 (2): 145–159. doi:10.2517/2020PR018. ISSN 1342-8144. S2CID 233029559.
  369. ^ Mayr G, Goedert JL (2021). "New late Eocene and Oligocene plotopterid fossils from Washington State (USA), with a revision of "Tonsala" buchanani (Aves, Plotopteridae)". Journal of Paleontology. 96: 224–236. doi:10.1017/jpa.2021.81. S2CID 240582610.
  370. ^ Piro A, Acosta Hospitaleche C (2021). "A new petrel (Aves: Procellariidae) from the early Miocene of Patagonia (Argentina)". Historical Biology. 34: 141–151. doi:10.1080/08912963.2021.1903891. S2CID 233616270.
  371. ^ Acosta Hospitaleche C, Paulina-Carabajal A, Yury-Yáñez R (February 2021). "The skull of the Miocene Spheniscus urbinai (Aves, Sphenisciformes): osteology, brain morphology, and the cranial pneumatic systems". Journal of Anatomy. 239 (1): 151–166. doi:10.1111/joa.13403. PMC 8197947. PMID 33576081. S2CID 231901493.
  372. ^ Degrange FJ, Tambussi CP, Taglioretti ML, Scaglia FA (2021). "Phylogenetic affinities and morphology of the Pliocene cathartiform Dryornis pampeanus Moreno & Mercerat". Papers in Palaeontology. 7 (4): 1765–1780. Bibcode:2021PPal....7.1765D. doi:10.1002/spp2.1361. S2CID 234850849.
  373. ^ Cenizo M, Noriega JI, Vezzosi RI, Tassara D, Tomassini R (2021). "First Pleistocene South American Teratornithidae (Aves): new insights into the late evolutionary history of teratorns". Journal of Vertebrate Paleontology. 41 (2): e1927064. Bibcode:2021JVPal..41E7064C. doi:10.1080/02724634.2021.1927064. S2CID 237517977.
  374. ^ van Heteren AH, Wroe S, Tsang LR, Mitchell DR, Ross P, Ledogar JA, Attard MR, Sustaita D, Clausen P, Scofield RP, Sansalone G (2021). "New Zealand's extinct giant raptor (Hieraaetus moorei) killed like an eagle, ate like a condor". Proceedings of the Royal Society B: Biological Sciences. 288 (1964): Article ID 20211913. doi:10.1098/rspb.2021.1913. PMC 8634616. PMID 34847767.
  375. ^ Mayr G (2021). "A partial skeleton of Septencoracias from the early Eocene London Clay reveals derived features of bee-eaters (Meropidae) in a putative stem group roller (Aves, Coracii)". Palaeobiodiversity and Palaeoenvironments. 102 (2): 449–463. doi:10.1007/s12549-021-00504-0.
  376. ^ Buffetaut E, Angst D (2021). "Macrornis tanaupus Seeley, 1866: an enigmatic giant bird from the upper Eocene of England". Geological Magazine. 158 (6): 1129–1134. Bibcode:2021GeoM..158.1129B. doi:10.1017/S0016756820001466. S2CID 226430023.
  377. ^ Degrange FJ (2021). "A Revision of Skull Morphology In Phorusrhacidae (Aves, Cariamiformes)". Journal of Vertebrate Paleontology. 40 (6): e1848855. doi:10.1080/02724634.2020.1848855. S2CID 234119602.
  378. ^ Mayr G, De Pietri V, Scofield RP (2021). "New bird remains from the early Eocene Nanjemoy Formation of Virginia (USA), including the first records of the Messelasturidae, Psittacopedidae, and Zygodactylidae from the Fisher/Sullivan site". Historical Biology. 34 (2): 322–334. doi:10.1080/08912963.2021.1910820. S2CID 234869631.
  379. ^ Happ J, Elsler A, Kriwet J, Pfaff C, Bocheński ZM (2021). "Two passeriform birds (Aves: Passeriformes) from the Middle Miocene of Austria". PalZ. 96 (2): 313–321. doi:10.1007/s12542-021-00579-2.
  380. ^ Tsai CH, Mayr G (2021). "A phasianid bird from the Pleistocene of Tainan: the very first avian fossil from Taiwan". Journal of Ornithology. 162 (3): 919–923. doi:10.1007/s10336-021-01886-w. S2CID 234872494.
  381. ^ Yen, An; Wu, Hsiao-Jou; Chen, Pin-Yi; Yu, Hon-Tsen; Juang, Jia-Yang (2021). "Egg Incubation Mechanics of Giant Birds". Biology. 10 (8): 738. doi:10.3390/biology10080738. PMC 8389601. PMID 34439970.
  382. ^ Sánchez-Marco A (2021). "Old and new fossil birds from the Spanish Miocene". Journal of Iberian Geology. 47 (4): 697–712. Bibcode:2021JIbG...47..697S. doi:10.1007/s41513-021-00178-9. S2CID 238262333.
  383. ^ Ramírez-Castro JM, Reynoso VH (2021). "New bird records for the Late Pleistocene of the American continent recovered in Central México and their paleogeographic implications". Journal of South American Earth Sciences. 112, Part 1: Article 103578. Bibcode:2021JSAES.11203578R. doi:10.1016/j.jsames.2021.103578. S2CID 241213068.
  384. ^ Zelenkov N, Sayfulloev N, Shnaider SV (2021). "Fossil birds from the Roof of the World: The first avian fauna from High Asia and its implications for late Quaternary environments in Eastern Pamir". PLOS ONE. 16 (10): e0259151. Bibcode:2021PLoSO..1659151Z. doi:10.1371/journal.pone.0259151. PMC 8550366. PMID 34705889.
  385. ^ Johnston P, Mitchell KJ (2021). "Contrasting Patterns of Sensory Adaptation in Living and Extinct Flightless Birds". Diversity. 13 (11): Article 538. doi:10.3390/d13110538.
  386. ^ Thorup K, Pedersen L, da Fonseca RR, Naimi B, Nogués-Bravo D, Krapp M, Manica A, Willemoes M, Sjöberg S, Feng S, Chen G, Rey-Iglesia A, Campos PF, Beyer R, Araújo MB, Hansen AJ, Zhang G, Tøttrup AP, Rahbek C (2021). "Response of an Afro-Palearctic bird migrant to glaciation cycles". Proceedings of the National Academy of Sciences of the United States of America. 118 (52): e2023836118. Bibcode:2021PNAS..11823836T. doi:10.1073/pnas.2023836118. PMC 8719893. PMID 34949638. S2CID 245445221.
  387. ^ Holgado, Borja (2021-12-03). "On the validity of the genus Amblydectes Hooley 1914 (Pterodactyloidea, Anhangueridae) and the presence of Tropeognathinae in the Cambridge Greensand". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20201658. doi:10.1590/0001-3765202120201658. ISSN 0001-3765. PMID 34877964. S2CID 244884444.
  388. ^ Cerqueira GM, Santos MA, Marks MF, Sayão JM, Pinheiro FL (2021). "A new azhdarchoid pterosaur from the Lower Cretaceous of Brazil and the paleobiogeography of the Tapejaridae". Acta Palaeontologica Polonica. 66 (3): 555–570. doi:10.4202/app.00848.2020. S2CID 239223501.
  389. ^ Zhou X, Pêgas RV, Ma W, Han G, Jin X, Leal ME, et al. (April 2021). "A new darwinopteran pterosaur reveals arborealism and an opposed thumb". Current Biology. 31 (11): 2429–2436.e7. Bibcode:2021CBio...31E2429Z. doi:10.1016/j.cub.2021.03.030. PMID 33848460. S2CID 233215450.
  390. ^ Roy E. Smith; David M. Martill; Alexander Kao; Samir Zouhri; Nicholas Longrich (2020). "A long-billed, possible probe-feeding pterosaur (Pterodactyloidea: ?Azhdarchoidea) from the mid-Cretaceous of Morocco, North Africa". Cretaceous Research. 118: Article 104643. doi:10.1016/j.cretres.2020.104643. S2CID 225201538.
  391. ^ a b Brian Andres; Wann Langston Jr. (14 December 2021). "Morphology and taxonomy of Quetzalcoatlus Lawson 1975 (Pterodactyloidea: Azhdarchoidea)". Journal of Vertebrate Paleontology. 41 (sup1): 142. Bibcode:2021JVPal..41S..46A. doi:10.1080/02724634.2021.1907587. ISSN 0272-4634. S2CID 245125409.
  392. ^ Wei X, Pêgas RV, Shen C, Guo Y, Ma W, Sun D, Zhou X (2021). "Sinomacrops bondei, a new anurognathid pterosaur from the Jurassic of China and comments on the group". PeerJ. 9: e11161. doi:10.7717/peerj.11161. PMC 8019321. PMID 33850665.
  393. ^ Soto M, Montenegro F, Toriño P, Mesa V, Perea D (2021). "A new ctenochasmatid (Pterosauria, Pterodactyloidea) from the late Jurassic of Uruguay". Journal of South American Earth Sciences. 111: Article 103472. Bibcode:2021JSAES.11103472S. doi:10.1016/j.jsames.2021.103472.
  394. ^ Richards TM, Stumkat PE, Salisbury SW (2021). "A new species of crested pterosaur (Pterodactyloidea, Anhangueridae) from the Lower Cretaceous (upper Albian) of Richmond, North West Queensland, Australia". Journal of Vertebrate Paleontology. 41 (3): e1946068. Bibcode:2021JVPal..41E6068R. doi:10.1080/02724634.2021.1946068.
  395. ^ Nascimento-Campos HB (2021). "RETRACTED ARTICLE: A new azhdarchoid pterosaur from the Late Cretaceous Javelina Formation of Texas". Biologia. 77 (8): 2255. doi:10.1007/s11756-021-00841-7. S2CID 238764420. (Retracted, see doi:10.1007/s11756-021-00841-7)
  396. ^ Fernandes DL, Nunes I, Costa FR (2021). "A taxonomic approach on diagnostic characters used to define new pterosaur taxa and an estimation of pterosaur diversity". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20201568. doi:10.1590/0001-3765202120201568. PMID 34550166. S2CID 237594498.
  397. ^ Baron MG (2021). "The origin of pterosaurs". Earth-Science Reviews. 221: Article 103777. Bibcode:2021ESRv..22103777B. doi:10.1016/j.earscirev.2021.103777.
  398. ^ Naish D, Witton MP, Martin-Silverstone E (2021). "Powered flight in hatchling pterosaurs: evidence from wing form and bone strength". Scientific Reports. 11 (1): Article number 13130. Bibcode:2021NatSR..1113130N. doi:10.1038/s41598-021-92499-z. PMC 8298463. PMID 34294737.
  399. ^ Smith RE, Chinsamy A, Unwin DM, Ibrahim N, Zouhri S, Martill DM (2021). "Small, immature pterosaurs from the Cretaceous of Africa: implications for taphonomic bias and palaeocommunity structure in flying reptiles". Cretaceous Research. 130: Article 105061. doi:10.1016/j.cretres.2021.105061. S2CID 239257717.
  400. ^ Dalla Vecchia FM (2021). "A revision of the anatomy of the Triassic pterosaur Austriadraco dallavecchiai Kellner, 2015 and of its diagnosis". Rivista Italiana di Paleontologia e Stratigrafia. 127 (2): 427–452. doi:10.13130/2039-4942/15849.
  401. ^ Alarcón-Muñoz J, Otero RA, Soto-Acuña S, Vargas AO, Rojas J, Rojas O (2021). "First record of a Late Jurassic rhamphorhynchine pterosaur from Gondwana". Acta Palaeontologica Polonica. 66 (3): 571–583. doi:10.4202/app.00805.2020. S2CID 239726523.
  402. ^ Jiang S, Wang X, Zheng X, Cheng X, Zhang J, Wang X (2021). "An early juvenile of Kunpengopterus sinensis (Pterosauria) from the Late Jurassic in China". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20200734. doi:10.1590/0001-3765202120200734. PMID 33886742. S2CID 233371329.
  403. ^ Pêgas RV, Costa FR, Kellner AW (2021). "Reconstruction of the adductor chamber and predicted bite force in pterodactyloids (Pterosauria)". Zoological Journal of the Linnean Society. 193 (2): 602–635. doi:10.1093/zoolinnean/zlaa163.
  404. ^ Pittman M, Barlow LA, Kaye TG, Habib MB (2021). "Pterosaurs evolved a muscular wing–body junction providing multifaceted flight performance benefits: Advanced aerodynamic smoothing, sophisticated wing root control, and wing force generation". Proceedings of the National Academy of Sciences of the United States of America. 118 (44): e2107631118. Bibcode:2021PNAS..11807631P. doi:10.1073/pnas.2107631118. PMC 8612209. PMID 34663691.
  405. ^ Bennett, S. C. (2021). "Complete large skull of the pterodactyloid pterosaur Ctenochasma elegans from the Late Jurassic Solnhofen Lithographic Limestones". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 301 (3): 283–294. doi:10.1127/njgpa/2021/1011. S2CID 239649715.
  406. ^ Zhou, C.-F.; Wang, X.; Wang, J. (2021). "First evidence for tooth-tooth occlusion in a ctenochasmatid pterosaur from the Early Cretaceous Jehol Biota". In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. Geological Society, London, Special Publications. Vol. 521. The Geological Society of London. pp. 9–17. doi:10.1144/SP521-2021-141. S2CID 244695072.
  407. ^ Averianov AO, Yarkov AA (2021). "The first record of a pteranodontid (Pterosauria, Pteranodontidae) from the Late Cretaceous of the Lower Volga Region". Paleontological Journal. 55 (1): 101–104. Bibcode:2021PalJ...55..101A. doi:10.1134/S0031030121010032. ISSN 0031-0301. S2CID 232070839.
  408. ^ Yun CG (2021). "Boreopterid pterosaur fossils from South Korea reconsidered". New Mexico Museum of Natural History and Science Bulletin. 82: 567–568.
  409. ^ Averianov AO, Kolchanov VV, Zverkov NG, Aleksandrova GN, Yaroshenko OP (2021). "The wandering jaws of Istiodactylus latidens (Pterosauria, Istiodactylidae)". Cretaceous Research. 126: Article 104887. Bibcode:2021CrRes.12604887A. doi:10.1016/j.cretres.2021.104887.
  410. ^ Bantim RA, de Andrade RC, Ferreira JS, Saraiva AÁ, Kellner AW, Sayao JM (2021). "Osteohistology and growth pattern of a large pterosaur from the Lower Cretaceous Romualdo Formation of the Araripe Basin, Northeastern Brazil". Cretaceous Research. 118: Article 104667. Bibcode:2021CrRes.11804667B. doi:10.1016/j.cretres.2020.104667. S2CID 225131416.
  411. ^ Abel P, Kear BP, Hornung JJ, Sachs S (2021). "An anhanguerian pterodactyloid mandible from the lower Valanginian of Northern Germany, and the German record of Cretaceous pterosaurs". Acta Palaeontologica Polonica. 66: S5–S12. doi:10.4202/app.00818.2020. S2CID 237335500..
  412. ^ Buchmann R, Holgado B, Sobral G, Avilla LS, Rodrigues T (2021). "Quantitative assessment of the vertebral pneumaticity in an anhanguerid pterosaur using micro-CT scanning". Scientific Reports. 11 (1): Article number 18718. Bibcode:2021NatSR..1118718B. doi:10.1038/s41598-021-97856-6. PMC 8455612. PMID 34548510.
  413. ^ Solonin, Sergey V.; Martill, David M.; Smith, Roy E.; Vodorezov, Alexey V. (2021). "First occurrence of ornithocheirid pterosaur teeth in the Dmitrov Formation (Santonian) of Ryazan Oblast, Russia". Cretaceous Research. 127: Article 104943. Bibcode:2021CrRes.12704943S. doi:10.1016/j.cretres.2021.104943.
  414. ^ Beccari V, Pinheiro FL, Nunes I, Anelli LE, Mateus O, Costa FR (2021). "Osteology of an exceptionally well-preserved tapejarid skeleton from Brazil: Revealing the anatomy of a curious pterodactyloid clade". PLOS ONE. 16 (8): e0254789. Bibcode:2021PLoSO..1654789B. doi:10.1371/journal.pone.0254789. PMC 8386889. PMID 34432814.
  415. ^ Shen C, Pêgas RV, Gao C, Kundrát M, Zhang L, Wei X, Zhou X (2021). "A new specimen of Sinopterus dongi (Pterosauria, Tapejaridae) from the Jiufotang Formation (Early Cretaceous, China)". PeerJ. 9: e12360. doi:10.7717/peerj.12360. PMC 8559606. PMID 34760376.
  416. ^ Bertozzo F, Camilo Da Silva B, Martill D, Vorderwuelbecke EM, Aureliano T, Schouten R, Aquino P (2021). "A large pterosaur femur from the Kimmeridgian, Upper Jurassic of Lusitanian Basin, Portugal". Acta Palaeontologica Polonica. 66 (4): 815–825. doi:10.4202/app.00858.2020. S2CID 243825717.
  417. ^ Augustin FJ, Matzke AT, Maisch MW, Pfretzschner HU (2021). "New information on Lonchognathosaurus (Pterosauria: Dsungaripteridae) from the Lower Cretaceous of the southern Junggar Basin (NW China)". Cretaceous Research. 124: Article 104808. Bibcode:2021CrRes.12404808A. doi:10.1016/j.cretres.2021.104808. S2CID 233790566.
  418. ^ Li Y, Wang X, Jiang S (2021). "A new pterosaur tracksite from the Lower Cretaceous of Wuerho, Junggar Basin, China: inferring the first putative pterosaur trackmaker". PeerJ. 9: e11361. doi:10.7717/peerj.11361. PMC 8176908. PMID 34131515.
  419. ^ Augustin FJ, Matzke AT, Maisch MW, Csiki-Sava Z (2021). "Pterosaur remains from the Lower Cretaceous Lianmuxin Formation (upper Tugulu Group) of the southern Junggar Basin (NW China)". Historical Biology. 34 (2): 312–321. doi:10.1080/08912963.2021.1910819. S2CID 233597623.
  420. ^ Augustin FJ, Matzke AT, Maisch MW, Kampouridis P, Csiki-Sava Z (2021). "The first record of pterosaurs from the Lower Cretaceous Hutubei Formation (lower Tugulu Group) of the southern Junggar Basin (NW China) – a glimpse into an unusual ecosystem". Cretaceous Research. 130: Article 105066. doi:10.1016/j.cretres.2021.105066. S2CID 239518703.
  421. ^ Williams CJ, Pani M, Bucchi A, Smith RE, Kao A, Keeble W, Ibrahim N, Martill DM (2021). "Helically arranged cross struts in azhdarchid pterosaur cervical vertebrae and their biomechanical implications". iScience. 24 (4): Article 102338. Bibcode:2021iSci...24j2338W. doi:10.1016/j.isci.2021.102338. PMC 8101050. PMID 33997669.
  422. ^ Averianov AO, Zverkov NG, Nikiforov AV (2021). "First finding of a pterosaur in the Upper Cretaceous of the Southern Urals". Paleontological Journal. 55 (6): 678–683. Bibcode:2021PalJ...55..678A. doi:10.1134/S0031030121060034. S2CID 245010400.
  423. ^ Pêgas RV, Holgado B, Ortiz David LD, Baiano MA, Costa FR (2022). "On the pterosaur Aerotitan sudamericanus (Neuquén Basin, Upper Cretaceous of Argentina), with comments on azhdarchoid phylogeny and jaw anatomy". Cretaceous Research. 129: Article 104998. Bibcode:2022CrRes.12904998P. doi:10.1016/j.cretres.2021.104998. S2CID 238725853.
  424. ^ Farke AA (2021). "A large pterosaur limb bone from the Kaiparowits Formation (late Campanian) of Grand Staircase-Escalante National Monument, Utah, USA". PeerJ. 9: e10766. doi:10.7717/peerj.10766. PMC 7825364. PMID 33552741.
  425. ^ Lehman, Thomas M. (2021-12-14). "Habitat of the giant pterosaur Quetzalcoatlus Lawson 1975 (Pterodactyloidea: Azhdarchoidea): a paleoenvironmental reconstruction of the Javelina Formation (Upper Cretaceous) Big Bend National Park, Texas". Journal of Vertebrate Paleontology. 41 (sup1): 21–45. Bibcode:2021JVPal..41S..21L. doi:10.1080/02724634.2019.1593184. ISSN 0272-4634. S2CID 245009158.
  426. ^ Padian, Kevin; Cunningham, James R.; Langston, Wann; Conway, John (2021-12-14). "Functional morphology of Quetzalcoatlus Lawson 1975 (Pterodactyloidea: Azhdarchoidea)". Journal of Vertebrate Paleontology. 41 (sup1): 218–251. Bibcode:2021JVPal..41S.218P. doi:10.1080/02724634.2020.1780247. ISSN 0272-4634. S2CID 245125427.
  427. ^ Andres, Brian (2021-12-14). "Phylogenetic systematics of Quetzalcoatlus Lawson 1975 (Pterodactyloidea: Azhdarchoidea)". Journal of Vertebrate Paleontology. 41 (sup1): 203–217. Bibcode:2021JVPal..41S.203A. doi:10.1080/02724634.2020.1801703. ISSN 0272-4634. S2CID 245078533.
  428. ^ Marchetti L, Collareta A, Belvedere M, Leonardi G (2021). "Ichnotaxonomy, biostratigraphy and palaeoecology of the Monti Pisani tetrapod ichnoassociation (Tuscany, Italy) and new insights on Middle Triassic Dinosauromorpha". Palaeogeography, Palaeoclimatology, Palaeoecology. 567: Article 110235. Bibcode:2021PPP...56710235M. doi:10.1016/j.palaeo.2021.110235. S2CID 233530709.
  429. ^ McCabe MB, Nesbitt SJ (2021). "The first pectoral and forelimb material assigned to the lagerpetid Lagerpeton chanarensis (Archosauria: Dinosauromorpha) from the upper portion of the Chañares Formation, Late Triassic". Palaeodiversity. 14 (1): 121–131. doi:10.18476/pale.v14.a5.
  430. ^ Mestriner G, LeBlanc A, Nesbitt SJ, Marsola JC, Irmis, RB, Da-Rosa ÁA, Ribeiro AM, Ferigolo J, Langer M (2021). "Histological analysis of ankylothecodonty in Silesauridae (Archosauria: Dinosauriformes) and its implications for the evolution of dinosaur tooth attachment". The Anatomical Record. 305 (2): 393–423. doi:10.1002/ar.24679. PMID 34021739. S2CID 235094106.
  431. ^ Agnolín F, Brissón Egli F, Ezcurra MD, Langer MC, Novas F (2021). "New specimens provide insights into the anatomy of the dinosauriform Lewisuchus admixtus Romer, 1972 from the Upper Triassic levels of the Chañares Formation, Nw Argentina". The Anatomical Record. 305 (5): 1119–1146. doi:10.1002/ar.24731. PMID 34358415. S2CID 236945638.
  432. ^ Manafzadeh AR, Kambic RE, Gatesy SM (February 2021). "A new role for joint mobility in reconstructing vertebrate locomotor evolution". Proceedings of the National Academy of Sciences of the United States of America. 118 (7): e2023513118. Bibcode:2021PNAS..11820235M. doi:10.1073/pnas.2023513118. PMC 7896293. PMID 33558244.
  433. ^ Pintore, R.; Houssaye, A.; Nesbitt, S. J.; Hutchinson, J. R. (2021). "Femoral specializations to locomotor habits in early archosauriforms". Journal of Anatomy. 240 (5): 867–892. doi:10.1111/joa.13598. PMC 9005686. PMID 34841511. S2CID 244752006.
  434. ^ Allen VR, Kilbourne BM, Hutchinson JR (March 2021). "The evolution of pelvic limb muscle moment arms in bird-line archosaurs". Science Advances. 7 (12): eabe2778. Bibcode:2021SciA....7.2778A. doi:10.1126/sciadv.abe2778. PMC 7978429. PMID 33741593.
  435. ^ Heers AM, Varghese SL, Hatier LK, Cabrera JJ (2021). "Multiple Functional Solutions During Flightless to Flight-Capable Transitions". Frontiers in Ecology and Evolution. 8: Article 573411. doi:10.3389/fevo.2020.573411. S2CID 231858466.
  436. ^ Bishop PJ, Falisse A, De Groote R, Hutchinson JR (2021). "Predictive simulations of musculoskeletal function and jumping performance in a generalized bird". Integrative Organismal Biology. 3 (1): obab006. doi:10.1093/iob/obab006. PMC 8341896. PMID 34377939.
  437. ^ Bronzati M, Benson RB, Evers SW, Ezcurra MD, Cabreira SF, Choiniere J, Dollman KN, Paulina-Carabajal A, Radermacher VJ, Roberto-da-Silva L, Sobral G, Stocker MR, Witmer LM, Langer MC, Nesbitt SJ (2021). "Deep evolutionary diversification of semicircular canals in archosaurs". Current Biology. 31 (12): 2520–2529.e6. Bibcode:2021CBio...31E2520B. doi:10.1016/j.cub.2021.03.086. PMID 33930303. S2CID 233472336.
  438. ^ Legendre LJ, Clarke JA (2021). "Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs". Evolution. 75 (6): 1415–1430. doi:10.1111/evo.14245. PMID 33913155. S2CID 233448002.
  439. ^ Hanson M, Hoffman EA, Norell MA, Bhullar BA (2021). "The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization". Science. 372 (6542): 601–609. Bibcode:2021Sci...372..601H. doi:10.1126/science.abb4305. PMID 33958471. S2CID 233872841.
  440. ^ David R, Bronzati M, Benson RB (2022). "Comment on "The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization"". Science. 376 (6600): eabl6710. doi:10.1126/science.abl6710. PMID 35737763. S2CID 249989812.
  441. ^ Hanson M, Hoffman EA, Norell MA, Bhullar BA (2022). "Response to Comment on "The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization"". Science. 376 (6600): eabl8181. doi:10.1126/science.abl8181. PMID 35737783. S2CID 249990447.
  442. ^ Sakamoto M (2021). "Assessing bite force estimates in extinct mammals and archosaurs using phylogenetic predictions". Palaeontology. 64 (5): 743–753. Bibcode:2021Palgy..64..743S. doi:10.1111/pala.12567.
  443. ^ Paulina-Carabajal A, Barrios FT, Méndez AH, Cerda IA, Lee YN (2021). "A Late Cretaceous dinosaur and crocodyliform faunal association–based on isolate teeth and osteoderms–at Cerro Fortaleza Formation (Campanian-Maastrichtian) type locality, Santa Cruz, Argentina". PLOS ONE. 16 (9): e0256233. Bibcode:2021PLoSO..1656233P. doi:10.1371/journal.pone.0256233. PMC 8425559. PMID 34495977.
  444. ^ Davis SN, Clarke JA (2021). "Estimating the distribution of carotenoid coloration in skin and integumentary structures of birds and extinct dinosaurs". Evolution. 76 (1): 42–57. doi:10.1111/evo.14393. PMID 34719783. S2CID 240356095.
  445. ^ Tada S, Tsuihiji T (2021). "Ossification of the respiratory turbinate in Aves and its implications for non-avian dinosaurs" (PDF). Bulletin of the National Museum of Nature and Science, Series C. 47: 53–59. doi:10.50826/bnmnsgeopaleo.47.0_53.
  446. ^ Lockley, M. G.; Abbassi, N.; Helm, C. W. (2021). "Large, unwebbed bird and bird-like footprints from the Mesozoic and Cenozoic: a review of ichnotaxonomy and trackmaker affinity". Lethaia. 54 (5): 969–987. Bibcode:2021Letha..54..969L. doi:10.1111/let.12458. S2CID 245606075.