Solar eclipse of January 27, 2055

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 27, 2055,[1] with a magnitude of 0.6932. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of January 27, 2055
Map
Type of eclipse
NaturePartial
Gamma1.155
Magnitude0.6932
Maximum eclipse
Coordinates69°30′N 112°12′W / 69.5°N 112.2°W / 69.5; -112.2
Times (UTC)
Greatest eclipse17:54:05
References
Saros122 (60 of 70)
Catalog # (SE5000)9630

The partial solar eclipse will be visible for most of North America.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

January 27, 2055 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2055 January 27 at 15:49:08.2 UTC
Ecliptic Conjunction 2055 January 27 at 17:40:43.6 UTC
Greatest Eclipse 2055 January 27 at 17:54:05.3 UTC
Equatorial Conjunction 2055 January 27 at 18:16:10.6 UTC
Last Penumbral External Contact 2055 January 27 at 19:58:56.1 UTC
January 27, 2055 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.69325
Eclipse Obscuration 0.59655
Gamma 1.15497
Sun Right Ascension 20h40m41.0s
Sun Declination -18°19'18.9"
Sun Semi-Diameter 16'14.5"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 20h39m58.6s
Moon Declination -17°17'11.5"
Moon Semi-Diameter 14'53.3"
Moon Equatorial Horizontal Parallax 0°54'38.4"
ΔT 87.2 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of August–September 2055
January 27
Descending node (new moon)
February 11
Ascending node (full moon)
   
Partial solar eclipse
Solar Saros 122
Total lunar eclipse
Lunar Saros 134
edit

Eclipses in 2055

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 122

edit

Inex

edit

Triad

edit

Solar eclipses of 2054–2058

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on March 9, 2054 and September 2, 2054 occur in the previous lunar year eclipse set, and the partial solar eclipses on May 22, 2058 and November 16, 2058 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2054 to 2058
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 August 3, 2054
 
Partial
−1.4941 122 January 27, 2055
 
Partial
1.155
127 July 24, 2055
 
Total
−0.8012 132 January 16, 2056
 
Annular
0.4199
137 July 12, 2056
 
Annular
−0.0426 142 January 5, 2057
 
Total
−0.2837
147 July 1, 2057
 
Annular
0.7455 152 December 26, 2057
 
Total
−0.9405
157 June 21, 2058
 
Partial
1.4869

Saros 122

edit

This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 46–68 occur between 1801 and 2200:
46 47 48
 
August 28, 1802
 
September 7, 1820
 
September 18, 1838
49 50 51
 
September 29, 1856
 
October 10, 1874
 
October 20, 1892
52 53 54
 
November 2, 1910
 
November 12, 1928
 
November 23, 1946
55 56 57
 
December 4, 1964
 
December 15, 1982
 
December 25, 2000
58 59 60
 
January 6, 2019
 
January 16, 2037
 
January 27, 2055
61 62 63
 
February 7, 2073
 
February 18, 2091
 
March 1, 2109
64 65 66
 
March 13, 2127
 
March 23, 2145
 
April 3, 2163
67 68
 
April 14, 2181
 
April 25, 2199

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 23, 2047 and November 16, 2134
June 22–23 April 10–11 January 27–29 November 15–16 September 3–5
118 120 122 124 126
 
June 23, 2047
 
April 11, 2051
 
January 27, 2055
 
November 16, 2058
 
September 3, 2062
128 130 132 134 136
 
June 22, 2066
 
April 11, 2070
 
January 27, 2074
 
November 15, 2077
 
September 3, 2081
138 140 142 144 146
 
June 22, 2085
 
April 10, 2089
 
January 27, 2093
 
November 15, 2096
 
September 4, 2100
148 150 152 154 156
 
June 22, 2104
 
April 11, 2108
 
January 29, 2112
 
November 16, 2115
 
September 5, 2119
158 160 162 164
 
June 23, 2123
 
November 16, 2134

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on April 8, 1902 (part of Saros 108) and January 5, 1935 (part of Saros 111) are also a part of this series but are not included in the table below.

Series members between 2000 and 2200
 
July 1, 2000
(Saros 117)
 
June 1, 2011
(Saros 118)
 
April 30, 2022
(Saros 119)
 
March 30, 2033
(Saros 120)
 
February 28, 2044
(Saros 121)
 
January 27, 2055
(Saros 122)
 
December 27, 2065
(Saros 123)
 
November 26, 2076
(Saros 124)
 
October 26, 2087
(Saros 125)
 
September 25, 2098
(Saros 126)
 
August 26, 2109
(Saros 127)
 
July 25, 2120
(Saros 128)
 
June 25, 2131
(Saros 129)
 
May 25, 2142
(Saros 130)
 
April 23, 2153
(Saros 131)
 
March 23, 2164
(Saros 132)
 
February 21, 2175
(Saros 133)
 
January 20, 2186
(Saros 134)
 
December 19, 2196
(Saros 135)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
July 8, 1823
(Saros 114)
 
June 17, 1852
(Saros 115)
 
May 27, 1881
(Saros 116)
 
May 9, 1910
(Saros 117)
 
April 19, 1939
(Saros 118)
 
March 28, 1968
(Saros 119)
 
March 9, 1997
(Saros 120)
 
February 17, 2026
(Saros 121)
 
January 27, 2055
(Saros 122)
 
January 7, 2084
(Saros 123)
 
December 19, 2112
(Saros 124)
 
November 28, 2141
(Saros 125)
 
November 8, 2170
(Saros 126)
 
October 19, 2199
(Saros 127)

References

edit
  1. ^ "January 27, 2055 Partial Solar Eclipse". timeanddate. Retrieved 15 August 2024.
  2. ^ "Partial Solar Eclipse of 2055 Jan 27". EclipseWise.com. Retrieved 15 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 122". eclipse.gsfc.nasa.gov.
edit