Solar eclipse of April 11, 2070

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070,[1] with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee (on April 12, 2070, at 17:50 UTC), the Moon's apparent diameter will be larger.[2]

Solar eclipse of April 11, 2070
Map
Type of eclipse
NatureTotal
Gamma0.3652
Magnitude1.0472
Maximum eclipse
Duration244 s (4 min 4 s)
Coordinates29°06′N 135°06′E / 29.1°N 135.1°E / 29.1; 135.1
Max. width of band168 km (104 mi)
Times (UTC)
Greatest eclipse2:36:09
References
Saros130 (55 of 73)
Catalog # (SE5000)9665

The path of totality will be visible from parts of Sri Lanka, the Andaman and Nicobar Islands, Myanmar, Thailand, Cambodia, Laos, Vietnam, Yongxing Island, the southern tip of Taiwan, and the Nanpō Islands. A partial solar eclipse will also be visible for most of Asia and parts of Alaska, Hawaii, and western Canada.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

April 11, 2070 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2070 April 10 at 23:59:46.0 UTC
First Umbral External Contact 2070 April 11 at 00:57:51.3 UTC
First Central Line 2070 April 11 at 00:58:44.4 UTC
First Umbral Internal Contact 2070 April 11 at 00:59:37.6 UTC
First Penumbral Internal Contact 2070 April 11 at 02:06:46.7 UTC
Ecliptic Conjunction 2070 April 11 at 02:32:21.8 UTC
Greatest Eclipse 2070 April 11 at 02:36:09.4 UTC
Greatest Duration 2070 April 11 at 02:39:03.0 UTC
Equatorial Conjunction 2070 April 11 at 02:47:19.1 UTC
Last Penumbral Internal Contact 2070 April 11 at 03:05:15.2 UTC
Last Umbral Internal Contact 2070 April 11 at 04:12:30.9 UTC
Last Central Line 2070 April 11 at 04:13:25.9 UTC
Last Umbral External Contact 2070 April 11 at 04:14:20.9 UTC
Last Penumbral External Contact 2070 April 11 at 05:12:23.7 UTC
April 11, 2070 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.04715
Eclipse Obscuration 1.09653
Gamma 0.36524
Sun Right Ascension 01h19m45.0s
Sun Declination +08°24'18.3"
Sun Semi-Diameter 15'57.8"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 01h19m20.0s
Moon Declination +08°45'25.6"
Moon Semi-Diameter 16'27.4"
Moon Equatorial Horizontal Parallax 1°00'23.9"
ΔT 97.7 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of April 2070
April 11
Descending node (new moon)
April 25
Ascending node (full moon)
   
Total solar eclipse
Solar Saros 130
Penumbral lunar eclipse
Lunar Saros 142
edit

Eclipses in 2070

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 130

edit

Inex

edit

Triad

edit

Solar eclipses of 2069–2072

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipse on May 20, 2069 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2069 to 2072
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120 April 21, 2069
 
Partial
1.0624 125 October 15, 2069
 
Partial
−1.2524
130 April 11, 2070
 
Total
0.3652 135 October 4, 2070
 
Annular
−0.495
140 March 31, 2071
 
Annular
−0.3739 145 September 23, 2071
 
Total
0.262
150 March 19, 2072
 
Partial
−1.1405 155 September 12, 2072
 
Total
0.9655

Saros 130

edit

This eclipse is a part of Saros series 130, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 20, 1096. It contains total eclipses from April 5, 1475 through July 18, 2232. There are no annular or hybrid eclipses in this set. The series ends at member 73 as a partial eclipse on October 25, 2394. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 30 at 6 minutes, 41 seconds on July 11, 1619. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 41–62 occur between 1801 and 2200:
41 42 43
 
November 9, 1817
 
November 20, 1835
 
November 30, 1853
44 45 46
 
December 12, 1871
 
December 22, 1889
 
January 3, 1908
47 48 49
 
January 14, 1926
 
January 25, 1944
 
February 5, 1962
50 51 52
 
February 16, 1980
 
February 26, 1998
 
March 9, 2016
53 54 55
 
March 20, 2034
 
March 30, 2052
 
April 11, 2070
56 57 58
 
April 21, 2088
 
May 3, 2106
 
May 14, 2124
59 60 61
 
May 25, 2142
 
June 4, 2160
 
June 16, 2178
62
 
June 26, 2196

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 23, 2047 and November 16, 2134
June 22–23 April 10–11 January 27–29 November 15–16 September 3–5
118 120 122 124 126
 
June 23, 2047
 
April 11, 2051
 
January 27, 2055
 
November 16, 2058
 
September 3, 2062
128 130 132 134 136
 
June 22, 2066
 
April 11, 2070
 
January 27, 2074
 
November 15, 2077
 
September 3, 2081
138 140 142 144 146
 
June 22, 2085
 
April 10, 2089
 
January 27, 2093
 
November 15, 2096
 
September 4, 2100
148 150 152 154 156
 
June 22, 2104
 
April 11, 2108
 
January 29, 2112
 
November 16, 2115
 
September 5, 2119
158 160 162 164
 
June 23, 2123
 
November 16, 2134

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
March 25, 1819
(Saros 107)
 
February 23, 1830
(Saros 108)
 
January 22, 1841
(Saros 109)
 
November 21, 1862
(Saros 111)
 
August 20, 1895
(Saros 114)
 
July 21, 1906
(Saros 115)
 
June 19, 1917
(Saros 116)
 
May 19, 1928
(Saros 117)
 
April 19, 1939
(Saros 118)
 
March 18, 1950
(Saros 119)
 
February 15, 1961
(Saros 120)
 
January 16, 1972
(Saros 121)
 
December 15, 1982
(Saros 122)
 
November 13, 1993
(Saros 123)
 
October 14, 2004
(Saros 124)
 
September 13, 2015
(Saros 125)
 
August 12, 2026
(Saros 126)
 
July 13, 2037
(Saros 127)
 
June 11, 2048
(Saros 128)
 
May 11, 2059
(Saros 129)
 
April 11, 2070
(Saros 130)
 
March 10, 2081
(Saros 131)
 
February 7, 2092
(Saros 132)
 
January 8, 2103
(Saros 133)
 
December 8, 2113
(Saros 134)
 
November 6, 2124
(Saros 135)
 
October 7, 2135
(Saros 136)
 
September 6, 2146
(Saros 137)
 
August 5, 2157
(Saros 138)
 
July 5, 2168
(Saros 139)
 
June 5, 2179
(Saros 140)
 
May 4, 2190
(Saros 141)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
October 9, 1809
(Saros 121)
 
September 18, 1838
(Saros 122)
 
August 29, 1867
(Saros 123)
 
August 9, 1896
(Saros 124)
 
July 20, 1925
(Saros 125)
 
June 30, 1954
(Saros 126)
 
June 11, 1983
(Saros 127)
 
May 20, 2012
(Saros 128)
 
April 30, 2041
(Saros 129)
 
April 11, 2070
(Saros 130)
 
March 21, 2099
(Saros 131)
 
March 1, 2128
(Saros 132)
 
February 9, 2157
(Saros 133)
 
January 20, 2186
(Saros 134)

Notes

edit
  1. ^ "April 10–11, 2070 Total Solar Eclipse". timeanddate. Retrieved 20 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 20 August 2024.
  3. ^ "Total Solar Eclipse of 2070 Apr 11". EclipseWise.com. Retrieved 20 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 130". eclipse.gsfc.nasa.gov.

References

edit