Paleobiota of the Cañadón Asfalto Formation

The Cañadón Asfalto Formation is a geological formation which dates to the Toarcian age of the Early Jurassic period of Argentina. The rocks of the formation preserve a diverse biota, including plants, dinosaurs, invertebrates, mammals and pterosaurs, among others. The formation is divided into two members: the lower Las Chacritas Member, and the overlying Puesto Almada member, though the latter has also been assigned to the overlying Cañadón Calcáreo Formation by some authors. The members are typically composed of fluvial-lacustrine deposits consisting of sandstones and shales, with a limestone carbonate evaporitic sequence also being present in the lower of the two.

Invertebrates

edit
Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.

Demospongiae

edit
Palaeospongillidae reported from the Cañadon Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Palaeospongilla[1]

  • P. chubutensis
  • Estancia Fossati locality
  • Las Chacritas Member

Isolated Specimens

A freshwater (Lacustrine) member of Palaeospongillidae (Spongillida Sponges). Represents the main lacustrine bottom inhabitant of the Chacritas Paleolake

 
Example of the living genus Spongilla. The genus Palaeospongilla was likely similar

Crustacea

edit
Crustacea reported from the Cañadon Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Carapacestheria[2][3][4]

  • C. taschi
  • Cañadón Asfalto
  • Cañadón Lahuincó
  • Cerro Bayo
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Eosestheriidae (Spinicaudatan). Originally identified as Cyzicus (Euestheria) taschi. This genus is found in identical alkaline lacustrine settings in the also Toarcian Mawson Formation of Antarctica

Congestheriella[4][5]

  • C. rauhuti
  • Sierra de la Manea
  • Estancia El Torito
  • Cañadón Los Chivos
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Afrograptidae (Spinicaudatan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation.

Darwinula[6]

  • D. magna
  • D. spp.
  • Cañadón Asfalto
  • Cañadón Lahuincó
  • Cerro Bayo
  • Cañadón Asfalto
  • Quebrada Subsidiaria
  • Estancia el Torito
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Darwinulidae (Ostracod).

Eosolimnadiopsis[7]

  • E. spp.
  • Cerro Cóndor
  • Estancia Fossati[8]
  • Las Chacritas Member

Isolated Valves

A freshwater (Lacustrine) member of Palaeolimnadiopseidae (Spinicaudatan).

Euestheria[9][3][4]

  • E. volkheimeri
  • Cerro Cóndor
  • Cerro Bayo
  • Alice Creek
  • Quebrada Subsidiaria
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Euestheriidae (Spinicaudatan).

Lioestheria[9][3][4]

  • C. (Lioestheria) sp. B
  • C. (Lioestheria) sp. C
  • Cañadón Las Chacritas
  • Colan Conhué
  • Alice Creek
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Fushunograptidae (Spinicaudatan).

 
Extant example of the Genus

Mandelstamia[9][6]

  • M.? spp.
  • Estancia El Torito
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Limnocytheridae (Ostracodan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation

Metacypris[9][6]

  • M. sp.
  • Estancia El Torito
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Loxoconchidae (Ostracodan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation.

Penthesilenula[9][6][10]

  • P. magna
  • P. sarytirmenensis
  • Cañadón de la Angostura
  • Estancia El Torito
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Darwinulidae (Ostracodan). These species are characteristic of the Middle Jurassic of northern China and where used to correlate the age of the beds

Pseudestherites[9]

  • P. sp.
  • Estancia El Torito
  • Cañadón Los Chivos
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Antronestheriidae (Spinicaudatan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation.

Theryosinoecum[9][6]

  • T. barrancalensis minor
  • Estancia El Torito
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Cytheroidea (Ostracodan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation.

Timiriasevia[9][6]

  • T. sp.
  • Estancia El Torito
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Limnocytheridae (Ostracodan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation.

Wolfestheria[4]

  • W. patagoniensis
  • W. smekali
  • Cañadón Asfalto
  • Cañadón Lahuincó
  • Estancia La Sin Rumbo
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Valves

A freshwater (Lacustrine) member of Fushunograptidae (Spinicaudatan).

Mollusca

edit
Mollusca reported from the Cañadon Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Corbicula[11]

  • C. spp.
  • Cerro Cóndor
  • Cerro Bayo
  • Estancia El Torito
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Shells

A freshwater (Lacustrine) member of Corbiculidae (Bivalve).

 
Extant example of the Genus

Cyanocyclas[11]

  • C. spp.
  • Cerro Cóndor
  • Cerro Bayo
  • Estancia El Torito
  • Las Chacritas Member
  • Puesto Almada Member

Conchas Aisladas

A freshwater (Lacustrine) member of Corbiculidae (Bivalve).

Diplodon[9][11][12]

  • D. spix
  • D. cf.matildensis
  • D. cf.spix
  • D. spp.
  • Cañadón Asfalto
  • Cerro Caracoles
  • Las Chacritas
  • Cañadón Lahuincó
  • Cañadón Miyanao
  • Cerro Cóndor
  • Cerro Bayo
  • Alice Creek
  • Quebrada Subsidiaria
  • Estancia El Torito
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Shells

A freshwater (Lacustrine) member of Unionidae (Bivalve). The most abundant Bivalve genus on the Formation. Represents also some of the smallest-sized specimens recorded in the Mesozoic, what can be explained by potential environment stress.[12]

 
Extant example of the Genus

Nayadidae[13]

Indeterminate

  • Cañadón Asfalto
  • Cañadón Lahuincó
  • Las Chacritas Member

Isolated Shells

A freshwater (Lacustrine) member of Unionidae (Bivalve).

Palaeomutela[3]

  • P. spp.
  • Las Chacritas
  • Las Chacritas Member

Isolated Shells

A freshwater (Lacustrine) member of Palaeomutelidae (Bivalve).

Potamolithus[3][13]

  • P.? spp.
  • Cañadón Asfalto
  • Cerro Caracoles
  • Las Chacritas
  • Cañadón Lahuincó
  • Las Chacritas Member

Isolated Shells

A freshwater (Lacustrine) member of Tateidae (Snail).

 
Extant example of the Genus

Sphaeriidae[14]

Indeterminate

  • Cañadón Asfalto
  • Las Chacritas Member

Isolated Shells

A freshwater (Lacustrine) member of Sphaeriida (Bivalve).

Viviparus[11]

  • V. spp.
  • Cañadón Asfalto
  • Cerro Caracoles
  • Cañadón Lahuincó
  • Cañadón Asfalto
  • Quebrada Subsidiaria
  • Estancia El Torito
  • Las Chacritas Member
  • Puesto Almada Member

Isolated Shells

A freshwater (Lacustrine) member of Viviparidae (Snail).

 
Extant example of the Genus

Insecta

edit

Insect eggs of unknown affinity were reported from several layers of the Estancia Fossati locality.[1]

Insects reported from the Cañadon Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Chironomidae[15]

Indeterminate

  • Gan Gan
  • Puesto Almada Member

Head capsules

Indeterminate Bittacidae (Migdes) remains, associated with lacustrine facies. Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation

 
Extant member of the Family

Coleoptera[16]

Indeterminate

  • Cerro Cóndor
  • Estancia Fossati[8]
  • Estancia El Torito
  • Estancia La Sin Rumbo
  • Las Chacritas Member
  • Puesto Almada Member

Elytra and body remains

Indeterminate Beetle remains, associated with lacustrine facies

 
Extant example of the Group

Conchindusia[9][7]

C. isp.

  • Cerro Cóndor
  • Gan Gan
  • Las Chacritas Member
  • Puesto Almada Member

Imprints or compressed moulds of larval cases

Indeterminate Trichoptera (Caddisflies) Ichnofossils, associated with lacustrine facies. Larval cases made of conchostracan shells

Heteroptera[16]

Indeterminate

  • Cerro Cóndor
  • Estancia Fossati
  • Estancia El Torito
  • Estancia La Sin Rumbo
  • Las Chacritas Member
  • Puesto Almada Member

Fragmentary wings

Indeterminate Heteroptera remains, associated with lacustrine facies

 
Extant example of the Group

Neorthophlebidae[15]

Indeterminate

  • Gan Gan
  • Puesto Almada member

Wings and parts of body

Indeterminate Bittacidae (Scorpionfly) remains, associated with lacustrine facies. Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation

Ostracindusia[9][7]

O. isp.

  • Cerro Cóndor
  • Gan Gan
  • Las Chacritas Member
  • Puesto Almada Member

Imprints or compressed moulds of larval cases

Indeterminate Trichoptera (Caddisflies) Ichnofossils, associated with lacustrine facies. Larval cases made of ostracodan shells

Terrindusia[9][17][7]

T. isp.

  • Cerro Cóndor
  • Estancia Fossati[8]
  • Gan Gan
  • Las Chacritas Member
  • Puesto Almada Member

Imprints or compressed moulds of larval cases

Indeterminate Trichoptera (Caddisflies) Ichnofossils, associated with lacustrine facies. Larval cases made of clasts or terrigenous particles

Trichoptera[9][16][17]

Indeterminate

  • Cerro Cóndor
  • Estancia Fossati
  • Estancia El Torito
  • Estancia La Sin Rumbo
  • Las Chacritas Member
  • Puesto Almada Member

Wings and larval cases

Indeterminate Trichoptera (Caddisflies) remains, associated with lacustrine facies

 
Extant example of the Group

Vertebrates

edit

Fish

edit
Actinopteri reported from the Cañadon Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Archaeomaenidae[18]

Indeterminate

  • Cerro Cóndor
  • Cañadón Asfalto
  • Cañadón Miyanao
  • Estancia Fossati
  • Localidad de Canela[19]
  • Cañadón Asfalto
  • Quebrada Subsidiaria
  • Las Chacritas Member

Isolated large median fin & Isolated Scales

A freshwater (Lacustrine) member of Archaeomaenidae (Teleostei). Maybe related to the genus Oreochima, coming from layers coeval, coregional, and of identical deposition of the Mawson Formation of Antarctica

 
Example of member of the family Archaeomaenidae, Archaeomaene

Amphibians

edit
Amphibians reported from the Cañadon Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Notobatrachus[20][21]

  • N. degiustoi[22]
  • N. reigi
  • Cf.N. spp.[19]
  • Cañadon Bagual
  • Zitarrosa
  • Cerro Cóndor
  • Canela
  • Queso Rallado

Las Chacritas Member

  • Many articulated, mostly complete skeletons
  • Most of a partially articulated skeleton and skull

An early frog of the family Notobatrachidae. Notobatrachus degiustoi can be distinguished from N. reigsi by features of the skull. The presence of this anuran in several locations suggests local proliferation linked with lacustrine bodies

 

Turtles

edit
Turtles reported from the Cañadon Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Condorchelys[20][23][24]

  • C. antiqua
  • C. cf.antiqua
  • C. spp.
  • Queso Rallado
  • Cañadon Bagual
  • Chucrut
  • Canela facies

Las Chacritas Member

  • Holotype: Most of a skull, carapace, and plastron.
  • MPEF-PV 3163, left humerus
  • MPEF-PV 3164, costal plate

A stem turtle (Mesochelydian) outside both extant groups, closely related with Kayentachelys aprix of North America and Indochelys spatulata of India. Likely occupied aquatic or semiaquatic niches.[23]

Testudinata[24]

Indeterminate

  • Canela facies

Las Chacritas Member

  • plastrons

Indeterminate Turtle remains

Lepidosaurs

edit
Lepidosaurs reported from the Cañadon Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images
Sphenocondor[25]

S. gracilis

Queso Rallado

Las Chacritas Member

Dentary

A Sphenodontian Rhynchocephalian, closely related with Godavarisaurus from the almost coeval Jurassic Kota Formation of India, maybe part of an endemic Gondwanan clade.[25]

Crocodylomorpha

edit
Crocodyliformes reported from the Cañadón Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Crocodylomorpha[26]

Indeterminate

Queso Rallado

Las Chacritas Member

Several isolated remains

Indeterminate crocodylomorph remains that represent among the most complete vertebrates linked with lacustrine facies.

Pterosaurs

edit
Pterosaurs reported from the Cañadón Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Allkaruen[27]

A. koi

Canadón Carrizal

Las Chacritas Member

A braincase, as well as a mandible and cervical vertebrae.

A pterosaur either related with Breviquartossa or maybe even a sister group of monofenestratan (Wukongopteridae + Pterodactyloidea) pterosaurs

 

Monofenestrata[28] Indeterminate Queso Rallado Las Chacritas Member Partial skull and associated post-cranial elements A Pterosaur with Monofenestratan features, representing the oldest record of the clade

Scaphognathinae?[29][30]

Indeterminate

Las Chacritas

Las Chacritas Member

Uncatalogued specimens, several mandibles, braincase, shoulder girdle, two humeri, several wing-finger phalanges

Indeterminate remains of a pterosaur, possibly a Rhamphorhynchoidea. It seems to represent a rhamphorhynchoid pterosaur with a wingspan of about 1.5–2 meters. The morphology is very similar to that of the lower jaw of the Scaphognathinae.[30]

Theropods

edit

During a campaign conducted in early 2021, remains of a large theropod dinosaur were found near the town of Las Chacritas. In 2020 a new fossil locality was found, named Cañadón de las Huellas due to the large number of sauropod, and probably theropod, footprints on one of the canyon walls. In the same locality in 2021, articulated remains where recovered and represent at least one sauropod and one large theropod.[31] At least four theropod morphotypes, including one with ceratosaur and another with Piatnitzkysauridae affinities, are known from the Cañadón Bagual.[32]

Theropoda reported from the Cañadón Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Asfaltovenator[33]

A. vialidadi

Cerro Condor

Las Chacritas Member

Nearly compete skull and largely complete front half of the skeleton forward of the hips, distal pubis and fermur and proximal fibula and tibia, partial foot

A probable early member of Allosauroidea

 

Averostra[34]

Indeterminate

  • Cerro Cóndor
  • Puesto el Quemado
  • Cerro Bayo

Las Chacritas Member

Isolated teeth: MPEF BA 182/08, BA 40/08, BA 09/80, BA 88/08, BA 252G+165/08 A, BA 252G+165/08 B, BA 252G+165/08 C

Theropod dinosaur teeth that resemble those assigned to the families Ceratosauridae, Megalosauridae and Abelisauridae

Ceratosauridae[35]

Indeterminate

Cañadon Bagual

Las Chacritas Member

A dentary with teeth in situ, MPEF-PV 6775

It resembles the dentary of Ceratosaurus

Condorraptor[29][36]

C. currumili

Las Chacritas

Las Chacritas Member

Partial articulated skeleton

A relative of Piatnitzkysaurus from the same formation, and a possible junior synonym of it as well.

 

Dromaeosauridae[34]

Indeterminate

  • Cerro Cóndor
  • Puesto el Quemado
  • Cerro Bayo

Las Chacritas Member

Isolated Teeth: MEPF BA 61/08, BA 103/08, BA 32/08 A, BA 32/08 B, BA 104/08, BA 226B/08, PV 3498, BA 29/08, BA51/08, BA 270/08 a, BA 270/08 b, BA 270/08 c

Theropod dinosaur teeth that resemble those assigned to the family Dromaeosauridae. Alternatively, they could belong to basal members of Coelurosauria

Eoabelisaurus[37]

E. mefi

Jugo Luco

Las Chacritas Member

A nearly complete articulated skeleton

A Neoceratosaur, that was suggested to be a basal member of Abelisauria, but also a member of Ceratosauridae

 

Megalosauridae[34]

Indeterminate

  • Cerro Cóndor
  • Puesto el Quemado
  • Cerro Bayo

Las Chacritas Member

Isolated Teeth: MPEF PV 1175, BA 66/08, PV 1356, PV 1357

Theropod dinosaur teeth that resemble those assigned to the family Megalosauridae.

Neotheropoda[34]

Indeterminate

  • Cerro Cóndor
  • Puesto el Quemado
  • Cerro Bayo

Las Chacritas Member

Isolated Teeth: MPEF BA 68/08, BA 92/08, PV 3499, BA 68/08, BA 183/08

Theropod dinosaur teeth that resemble those assigned to basal neotheropods, such as members of Coelophysoidea.

Piatnitzkysauridae[38][34]

Indeterminate

  • Cerro Cóndor
  • Puesto el Quemado
  • Cerro Bayo

Las Chacritas Member

Isolated Teeth & Cranial remains: MPEF 1717 CC 205, PV 3440A A, PV 3440A B, PV 3440A C, PV 3440A D, PV 3440A E, PV 3440A F, PV 3440A G

Theropod dinosaur teeth that resemble those assigned to members of Piatnitzkysauridae.

Piatnitzkysaurus[36][39]

P. floresi

Cerro Cóndor South

Las Chacritas Member

Two "fragmentary skulls with associated postcranium."[40]

Possible senior synonym of Condorraptor from the same formation.

 

Spinosauridae[34]

Indeterminate

  • Cerro Cóndor

Las Chacritas Member

Isolated Teeth : MEPF PV 1350

Theropod dinosaur teeth resembling those assigned to members of Spinosauridae. Alternatively, they could belong to members of Ceratosauria

Tetanurae[34]

Indeterminate

  • Cerro Cóndor
  • Puesto el Quemado
  • Cerro Bayo

Las Chacritas Member

Isolated Teeth : MEPF BA 84/08, BA 49/08 A, BA 49/08 B, BA 64/08, BA 65/08, BA 266/07

Theropod dinosaur teeth that resemble with those assigned to members of Megalosauridae and Dromaeosauridae

Theropoda[34]

Indeterminate

  • Cerro Cóndor

Las Chacritas Member

Isolated Teeth : MPEF PV 1640

"Outlier" tooth that doesn't fit in any previously known morphotype, maybe due to preservation

Theropodipedia[41]

Indeterminate

  • Cerro Cóndor

Las Chacritas Member

Footprints

Possible theropod footprints, unassigned to any concrete ichnogenus

Sauropodomorphs

edit

A sediment tubular shaped mass enriched in organic matter, closely associated within the ventral area of articulated remains of a sauropod, was recovered at Cerro Condor, composed of a high concentration of pollen grains & cuticular fragments, mainly leaves of two morphotypes (Araucariaceae and Cheirolepidaceae), probably representing the gut contents of the sauropod, inferring a conifer-based diet.[42]

Sauropodiformes reported from the Cañadón Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Bagualia[43]

B. alba

Cañadon Bagual

Las Chacritas Member

The partial skeletons of three individuals

An early member of Eusauropoda, related with the African genus Spinophorosaurus

 

Diplodocidae[44][45]

Indeterminate

Cerro Condor Sur

Las Chacritas Member

MACN-CH 934: axial neural arches and spines, an ilium, a pubis, ?two or ?three ischia, and two maxillae

This specimen shows strong Diplodocidae affinities, yet it has been considered either a derived non-neosauropodan eusauropod (having resemblance with Lapparentosaurus in some characters) or even a basal neosauropod (also resembling Haplocanthosaurus)

Eusauropoda[45]

Indeterminate

Cerro Condor Sur

Las Chacritas Member

MACN-CH 230: three dorsal vertebrae

Likely a eusauropod, possibly a cetiosaurid. Smaller than other sauropod taxa found in the formation.

Patagosaurus[46][47]

P. fariasi

Cerro Condor

Las Chacritas Member

Many specimens, including a partial skull.

A non-neosauropodan eusauropodan member of Cetiosauridae. This genus represents the most abundant sauropod in the formation

 

Sauropodiformes[48]

Indeterminate

Queso Rallado, near Cerro Cóndor

Las Chacritas Member

Isolated Teeth: MPEF-PV 10860

An indeterminate Sauropodiform or a very basal sauropod or even dental material of Volkheimeria.[49]

Sauropoda[45]

Indeterminate

Cerro Condor Sur

Las Chacritas Member

MACN-CH 219, 223(+221), 231

Too fragmentary to be ascribed to any taxon, currently classified as Sauropoda indet.

Titanosauriformes[50]

Indeterminate

Queso Rallado, near Cerro Cóndor

Las Chacritas Member

Isolated Teeth: MPEF-PV 10606

An indeterminate Titanosauriform. It can be alternatively a basal Eusauropod. Possible relationships with Atlasaurus

Volkheimeria[45]

V. chubutensis

Cerro Cóndor South

Las Chacritas Member

"Partial skeleton consisting of presacral and sacral vertebrae, pelvis, [and] hindlimb."

Either a gravisaur or a sister taxon of the Indian genus Barapasaurus

Ornithischians

edit
Ornithischians reported from the Cañadón Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Cerapoda[51]

Indeterminate

Queso Rallado

Las Chacritas Member

Isolated ungual phalanx and Isolated Teeth: MPEF-PV 3818, MPEF-PV 3824, MEPF-PV 3820, MEPF-PV 3825, MEPF-PV 10861, MPEF-PV 10823, MPEF-PV 3821 & MPEF-PV 10864

An indeterminate Cerapodan with resemblances with Hypsilophodon. Some of the referred remains have been reclassified as Manidens material

Heterodontosauridae[51]

Indeterminate

Queso Rallado

Las Chacritas Member

Metapodials, caudal vertebrae, and isolated phalanges: MPEF-PV 3826

heterodontosaurid that cannot be compared with Manidens due to the lack of overlapping fossils.

Manidens[52][51]

M. condorensis

  • Queso Rallado
  • Sitio Frenguelli
  • Sitio Canela

Las Chacritas Member

Partial articulated specimen, skull & associated elements as well referred isolated teeth: MPEF-PV 3809, MPEF-PV 3211, MPEF-PV 3808, MPEF-PV 10867, MPEF-PV 1719, MPEF-PV 1786, MPEF-PV 1718, MPEF-PV 3810, MPEF-PV 3811, MPEF-PV 3812, MPEF-PV 3813, MPEF-PV 3814, MPEF-PV 3815, MPEF-PV 3816, MPEF-PV 10866

A primitive and small heterodontosaurid. Fossils attributed to this genus may have been at least partially arboreal. Principal component analysis found that the feet of Manidens were most similar to those of tree-perching birds.[53]

 

Ornithischia[51]

Indeterminate

  • Queso Rallado

Las Chacritas Member

Isolated teeth: MPEF-PV 3817, MPEFPV 3819, MPEF-PV 3822.

Not referable to any taxa beyond Ornithischia Indet.

Mammals

edit
Mammals reported from the Cañadón Asfalto Formation
Genus Species Location Stratigraphic position Material Notes Images

Allotheria[54]

Indeterminate

Queso Rallado

Las Chacritas Member

Isolated Teeth

An Allotherian whose affinities hasn't been tested

Argentoconodon[55]

A. fariasorum

Queso Rallado

Las Chacritas Member

MPEF-PV2362, fragmentary left maxilla, MPEF-PV2363 partial skeleton, MPEFPV2364 isolated complete right upper last molariform

A volaticotherian (Alticonodontinae), closely related to the Asian genus Volaticotherium, having similar postcraneal appearance, indicating possible gliding capabilities, yet better material is needed to prove it.[55]

Asfaltomylos[20][56]

A. patagonicus

Queso Rallado

Las Chacritas Member

MPEF PV 1671, complete lower maxilla

An Australosphenidan, related to Henosferus in Henosferidae.

Condorodon[54]

C. spanios

Queso Rallado

Las Chacritas Member

MPEF-PV 2365, isolated complete lower left molariform

An "amphilestid" triconodont, related with the late jurassic African Tendagurodon.[54]

Henosferus[20][57]

  • H. molus
  • H. sp.
  • Queso Rallado
  • Canela[19]

Las Chacritas Member

MPEF 2353 right lower jaw, MPEF 2354 Left lower jaw, MPEF 2357 Left lower jaw, referred MPEF 2355 isolated upper premolar

An Australosphenidan, related to Asfaltomylos in Henosferidae, being twice as large as this last one.[57]

Fungi

edit
Genus Species Location Stratigraphic position Member Material Ecogroup Palaeoclimate requirements Notes

Annella[58]

  • A. capitata

Central Patagonia

  • Cañadon Lahuincó
  • Las Chacritas Member

Hypae and Miospores

Unknown: either Aquatic (Freshwater) or Parasitic

Unknown, suggested highly seasonality

A Fungus of uncertain relationships. This species is recovered in both coal seams and proximal prodelta sediments, making the assignation of a biome complex.[58]

Plants

edit

According to a palynological study the dominant pollen was produced by the conifer families Cheirolepidiaceae (Classopollis) and Araucariaceae (mainly Araucariacites and Callialasporites), suggesting that warm-temperate and relatively humid conditions under highly seasonal climate prevailed during the depositional times of the unit. The abundance of Botryococcus supports the presence of a shallow lake with probably saline conditions.[59] Locally, the Cañadón Asfalto represents a more poor record of the floras seen in the undeliying Lonco Tapial Formation, with its closest floras found on the Antarctic Peninsula Sweeney Formation at Potter Peak, sharing Brachyphyllum spp. and Elatocladus confertus.[60]

Phytoplankton

edit

Possible freshwater "calcareous algae", associated with conifer shoots and aquatic invertebrates, have been reported from Cerro Caracoles.[61]

Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Botryococcus[59][62][9]

  • B. sp. cf. B. braunii
  • B. spp
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Cerro Bandera
  • Las Chacritas Member
  • Puesto Almada Member

Algae

Aquatic (freshwater); Alkaline indicator

Highly seasonal climate

A freshwater algae of the family Botryococcaceae. This genus is the main indicator, due to its abundance, of the presence of a shallow lake with probably saline conditions, reaching in some samples about 96 to 70%.[59]

 
Extant specimen

Leiosphaeridia[59][62]

  • L. sp.
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Zygospores

Aquatic (freshwater)

Temperate to warm; seasonal climate

Algae or Algae Acritarch of the family Prasinophyceae.

Ovoidites[59][62]

  • O. spp.
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Zygospores

Aquatic (freshwater)

Temperate to warm; seasonal climate

Algae of the family Zygnemataceae

 
Extant Spirogyra; Ovoidites may be derived from a similar genus

Bryophyta

edit
Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Antulsporites[59]

  • A. saevus
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Upland and Riverside

Can withstand long periods of drought; seasonal climate

Affinities with the family Sphagnaceae in the Sphagnopsida. "Peat moss" spores, related to genera such as Sphagnum that can store large amounts of water.

 
Extant Sphagnum specimens; Stereisporites, Sculptisporis and Rogalskaisporites probably come from similar genera

Neoraistrickia[59]

  • N. cf. suratensis
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Upland and Lowland

Warm to temperate, relatively wet

Affinities with the family Selaginellaceae and Lycopodiaceae in the Lycopsida.

Nevesisporites[59][62]

  • N. vallatus
  • N. cf. undatus
  • N. cf. radiatus
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Upland and Riverside

Can withstand long periods of drought; seasonal climate

Affinities with Bryophyta.

Retitriletes[59]

  • R. austroclavatidites
  • R. semimuris
  • R. sp. 1
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Upland and Lowland

Warm to temperate, relatively wet

Affinities with Bryophyta.

Stereisporites[59]

  • S. sp. cf. S. psilatus
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Upland and Riverside

Can withstand long periods of drought; seasonal climate

Affinities with the family Sphagnaceae in the Sphagnopsida.

Equisetales

edit
Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Equisetites[62][13][63][64]

  • E. approximatus
  • E. spp.
  • Cañadon Asfalto
  • Cañadon Lahuincó
  • Paso de Indios
  • Pomelo locality
  • Las Chacritas Member

Stems

Lowland and Riverside

Warm to temperate, relatively wet

Plants of the group Equisetales. Usually linked with riversides

 
Equisetites specimen

Pteridophyta

edit
Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Baculatisporites[62]

  • B. comaumensis
  • Cañadon Lahuincó
  • Las Chacritas Member

Spores

Lowland and Riverside

Warm to temperate, relatively wet

Affinities with the family Osmundaceae in the Polypodiopsida. Near fluvial current ferns, related to the modern Osmunda regalis.

 
Extant Osmunda specimens; Baculatisporites probably come from similar genera or maybe a species from the genus

Biretisporites[59]

  • B. sp. A
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Lowland and Riverside

Warm to temperate, relatively wet

Affinities with the Marattiaceae in the Polypodiopsida. Fern spores from low herbaceous flora.

 
Extant Marattia specimens; Marattisporites probably comes from similar genera

Cadargasporites[59]

  • C. sp. cf. C. reticulatus
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Lowland and Riverside

Warm to temperate, relatively wet

Uncertain affinity Fern Spores Filicopsida incertae sedis

Cladophlebis[62][63][64]

  • C. grahami
  • C. oblonga
  • Cañadon Asfalto
  • Cañadon Lahuincó
  • Paso de Indios
  • Pomelo locality
  • Las Chacritas Member

Isolated Pinnae

Lowland and Riverside

Warm to temperate, relatively wet

Plants of the family Osmundaceae.

 

Clavatisporites[59]

  • C. spp.
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Lowland and Riverside

Warm to temperate, relatively wet

Filicopsida incertae sedis

Deltoidospora[59]

  • D. australis
  • D. minor
  • Cañadon Lahuincó
  • Las Chacritas Member

Spores

Upland, Lowland and Riverside

Warm to temperate, relatively wet

Affinities with the families Cyatheaceae/Dicksoniaceae Dipteridaceae/Matoniaceae in the Polypodiopsida.

Dictyophyllidites[59][62]

  • D. harrisii
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Lowland and Riverside

Warm to temperate, relatively wet

Gleichenites[64]

  • G. cf.taquetrensis
  • Paso de Indios
  • Las Chacritas Member

Isolated Pinnae

Lowland and Riverside

Warm to temperate, relatively wet

Plants of the family Gleicheniales.

Ischyosporites[59]

  • I. marburgensis
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Upland, Lowland Riverside

Warm to temperate, relatively wet

Affinities with the family Lygodiaceae and Schizaeaceae in the Polypodiopsida. Climbing or herbaceous fern spores.

 
Extant Lygodium; Lygodioisporites probably comes from similar genera or maybe a species from the genus

Klukisporites[59]

  • K. lacunus
  • K. variegatus
  • K. sp. cf. K. scaberis
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Upland, Lowland Riverside

Warm to temperate, relatively wet

Obtusisporis[59]

  • O. modestus
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Spores

Lowland and Riverside

Warm to temperate, relatively wet

Filicopsida incertae sedis

Rugulatisporites[62]

  • R. sp.
  • Cañadon Lahuincó
  • Las Chacritas Member

Spores

Lowland and Riverside

Warm to temperate, relatively wet

Affinities with the family Osmundaceae in the Polypodiopsida.

Sphenopteris[62][63]

  • S. patagonica
  • S. hallei
  • Cañadon Asfalto
  • Cañadon Lahuincó
  • Las Chacritas Member

Isolated Pinnae

Upland, Lowland and Riverside

Warm to temperate, relatively wet

Plants of the group Sphenopteridae, whose affinity for mesozoic specimens is uncertain, yet has been suggested to be fronds of Dicksoniaceae affinity

 

Todisporites[62]

  • T. minor
  • Cañadon Lahuincó
  • Las Chacritas Member

Spores

Upland

Warm to temperate, relatively wet. Can withstand long periods of drought; seasonal climate

Affinities with the family Osmundaceae in the Polypodiopsida.

Trilobosporites[59]

  • T. sp.
  • Cañadon Lahuincó
  • Las Chacritas Member

Spores

Upland, Lowland and Riverside

Warm to temperate, relatively wet

Affinities with the families Cyatheaceae/Dicksoniaceae Dipteridaceae/Matoniaceae in the Polypodiopsida.

Verrucosisporites[62]

  • V. varians
  • Cañadon Lahuincó
  • Las Chacritas Member

Spores

Upland

Can withstand long periods of drought; seasonal climate

Affinities with the family Osmundaceae in the Polypodiopsida.

Peltaspermales

edit
Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Alisporites[59][62][9]

  • A. similis
  • A. lowoodensis
  • A. spp.
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Cerro Bandera
  • Las Chacritas Member
  • Puesto Almada Member

Pollen

Riverside

Warm, can withstand long periods of drought; seasonal climate

Affinities with the families Peltaspermaceae, Corystospermaceae or Umkomasiaceae in the Peltaspermales. Pollen of uncertain provenance that can be derived from any of the members of the Peltaspermales.

Antevsia[65]

A. sp.

  • Pomelo locality
  • Las Chacritas Member

Pollen-bearing organs

Lowland and Riverside

Warm, can withstand long periods of drought; seasonal climate

Plants of the group Peltaspermaceae.

Archangelskya[62][63][64]

A. furcata

  • Cañadon Asfalto
  • Cañadon Lahuincó
  • Las Chacritas Member

Isolated Pinnae

Lowland and Riverside

Warm, can withstand long periods of drought; seasonal climate

Plants of the group Pteridospermata

Lepidopteris[66][67]

L. scassoi

  • Pomelo locality
  • A12 locality
  • Las Chacritas Member

Isolated Pinnae

Lowland and Riverside

Warm, can withstand long periods of drought; seasonal climate

Plants of the group Peltaspermaceae. This species represents the youngest record of the genus, by more than 20 Myr.

 

Peltaspermum[64][66]

P. sp.

  • Pomelo locality
  • A12 locality
  • Las Chacritas Member

Ovuliferous Cones

Lowland and Riverside

Warm, can withstand long periods of drought; seasonal climate

Plants of the group Peltaspermaceae.

 

Vitreisporites[59]

  • V. pallidus
  • Cañadon Lahuincó
  • Las Chacritas Member

Pollen

Riverside

Warm, relatively wet

From the family Caytoniaceae in the Caytoniales. Caytoniaceae are a complex group of Mesozoic fossil floras that may be related to both Peltaspermales and Ginkgoaceae.

Cycadeoidopsida

edit
Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Zamites[64][66]

  • Z. sp.
  • Pomelo locality
  • A12 locality
  • Las Chacritas Member

Leaflets

Lowland and Riverside

Warm to temperate, can withstand long periods of drought; seasonal climate

Affinities with Bennettitales inside Cycadeoidopsida.

 

Czekanowskiales

edit
Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Phoenicopsis[13][64]

  • P. sp.
  • Cañadon Asfalto
  • Pomelo locality
  • Las Chacritas Member

Pollen Organs

Lowland and Riverside

Warm to temperate, can withstand long periods of drought; seasonal climate

Plants of the group Leptostrobales (Czekanowskiales). Gingko-like taxa

Gnetopsida

edit
Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Ephedripites[62][9]

  • E. spp.
  • Cañadon Lahuincó
  • Cerro Bandera
  • Las Chacritas Member
  • Puesto Almada Member

Pollen

Lowland and Riverside

Warm to temperate, can withstand long periods of drought; seasonal climate

A Pollen Grain, affinities with Ephedraceae inside Gnetopsida.

 
Extant Ephedra, typical example of Ephedraceae. Equisetosporites probably come from a similar or a related Plant

Coniferophyta

edit
Genus Species Location Member Material Ecogroup Palaeoclimate requirements Notes Images

Agathoxylon[68]

  • A. spp.
  • Cañadon Bagual
  • Las Chacritas Member

Fossil Wood

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Araucariaceae in the Pinales.

Araucariacites[59][62][9]

  • A. australis
  • A. fissus
  • A. pergranulatus
  • A. cf. A. pergranulatus
  • A. sp. A
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Cerro Bandera
  • Las Chacritas Member
  • Puesto Almada Member

Pollen

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants.

Araucaritites[62][63][64]

  • A. chuchensis
  • A. spp.
  • Cañadon Asfalto
  • Pomelo locality
  • A12 locality
  • Cañadon Lahuincó
  • Estancia La Vistosa
  • Paso de Indios
  • Las Chacritas Member

Ovuliferous scales

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Plants of the family Araucariaceae.

Athrotaxites[62][63][64]

  • A. ungeri
  • Cañadon Asfalto
  • Cañadon Lahuincó
  • Las Chacritas Member

Branched shoots

Upland

?Warm to temperate, relatively wet

Plants of the family Taxodiaceae

Austrohamia[64][69]

  • A. asfaltensis
  • Cañadon Lahuincó
  • Las Chacritas Member

Branched shoots & Ovuliferous cones

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Plants of the family Cunninghamioideae. Along with the also Argentinian species A. minuta, this specimens represent the oldest fossil taxa that can be confidently assigned to Cupressaceae sensu lato

Brachyoxylon[64][70]

B. currumilii

  • Pomelo locality
  • Las Chacritas Member

Fossil Wood

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Plants of the family Araucariaceae or Cheirolepidiaceae

Brachyphyllum[62][63][64][66]

  • B. cf. lotenaense
  • B. spp.
  • Cañadon Asfalto
  • Cerro Caracoles
  • Las Chacritas
  • Pomelo locality
  • A12 locality
  • Cañadon Lahuincó
  • Paso de Indios
  • Canela locality
  • Las Chacritas Member

Branched shoots & Ovuliferous cones

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Plants of the family Araucariaceae or Cheirolepidiaceae

Callialasporites[59][62][9]

  • C. dampieri
  • C. microvelatus
  • C. turbatus
  • C. minus
  • C. sp. 1
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Cerro Bandera
  • Las Chacritas Member
  • Puesto Almada Member

Pollen

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants.

Cerebropollenites[59][62][9]

  • C. macroverrucosus
  • C. carlylensis
  • C. mesozoicus
  • C. sp. 1
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Cerro Bandera
  • Las Chacritas Member
  • Puesto Almada Member

Pollen

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with both Sciadopityaceae and Miroviaceae in the Pinopsida. This pollen's resemblance to extant Sciadopitys suggest that Miroviaceae may be an extinct lineage of Sciadopityaceae-like plants.[71]

 
Extant Sciadopitys. Cerebropollenites likely come from a related plant

Classopollis[59][62][9]

  • C. classoides
  • C. intrareticulatus
  • C. simplex
  • C. itunensis
  • C. torosus
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Cerro Bandera
  • Las Chacritas Member
  • Puesto Almada Member

Pollen

Lowland and Coastal lake

Warm to temperate, can withstand long periods of drought; seasonal climate

Affinities with the Hirmeriellaceae in the Pinopsida. Classopollis is the most abundant component of the assemblage, with ranges from 73 to 81.6% to 89.6%-89.7% in some samples.[59]

Elatoclaudus[62][63][64]

  • E. confertus
  • E. jabalpurensis
  • Cañadon Asfalto
  • Cañadon Lahuincó
  • Pomelo locality
  • Las Chacritas Member

Branched shoots

Upland and Lowland

Warm to temperate, can withstand long periods of drought; seasonal climate

Plants of the family Cupressaceae

Exesipollenites[62]

  • E. sp.
  • Cañadon Lahuincó
  • Las Chacritas Member

Pollen

Lowland and Coastal lake

Warm to temperate, can withstand long periods of drought; seasonal climate

Affinities with the Hirmeriellaceae in the Pinopsida. Classopollis is the most abundant component of the assemblage, with ranges from 73 to 81.6% to 89.6%-89.7% in some samples.[59]

Indusiisporites[59]

  • I. parvisaccatus
  • I. sp. 1
  • I. sp. 2
  • I. sp. 3
  • Cañadón Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Pollen

Upland

Temperate, relatively dry

Affinities with the family Podocarpaceae. Pollen from diverse types of Podocarpaceous conifers, that include morphotypes similar to the low arbustive Microcachrys and the medium arbustive Lepidothamnus, likely linked with Upland settings

Inaperturopollenites[59]

  • I. indicus
  • I. giganteus
  • I. microgranulatus
  • I. cf. reidi
  • I. sp. 1
  • I. sp. 2
  • Cañadon Lahuincó
  • Las Chacritas Member

Pollen

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants.

Kaokoxylon[68]

  • K. spp.
  • Cañadon Bagual
  • Las Chacritas Member

Fossil Wood

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Araucariaceae in the Pinales. Represents the youngest record of the genus, otherwise know from Permain or Triassic strata.[72]

Microcachryidites[62][9]

  • M. castellanosii
  • M. antarcticus
  • Cañadón Lahuincó
  • Cañadón Caracoles
  • Cerro Bandera
  • Las Chacritas Member
  • Puesto Almada Member

Pollen

Upland

Temperate, relatively dry

Affinities with the family Podocarpaceae. Pollen from Podocarpaceous conifers similar to the low arbustive Microcachrys

 
Extant Microcachrys Cone, example of the Podocarpaceae. Microcachryidites is similar to the pollen found on this genus

Pagiophyllum[62][63][64][66]

  • P. divaricatum
  • P. fiestmantelli
  • Cañadon Asfalto
  • Pomelo locality
  • A12 locality
  • Cañadon Lahuincó
  • Paso de Indios
  • Canela locality
  • Las Chacritas Member

Branched shoots

Lowland and Coastal lake

Warm to temperate, can withstand long periods of drought; seasonal climate

Plants of the family Araucariaceae or Cheirolepidiaceae

Pelourdea[13][64]

  • P. sp.
  • Cañadon Asfalto
  • Las Chacritas Member

Pollen Organs

Lowland and Coastal lake

Warm to temperate, can withstand long periods of drought; seasonal climate

Incertae sedis inside Coniferales, suggested as a member of its own family, the "Pelourdeaceae". A hygrophytic riparian conifer with herbaceous or shrubby habit. Some specimens are difficult to identify.

Perinopollenites[62]

  • P. elatoides
  • Cañadón Lahuincó
  • Las Chacritas Member

Pollen

Upland and Lowland

Warm to temperate; seasonal climate

Affinities with the family Cupressaceae in the Pinopsida. Pollen that resembles that of extant genera such as the genus Actinostrobus and Austrocedrus, probably derived from Upland environments.

 
Extant Austrocedrus. Exesipollenites and Perinopollenites maybe come from a related plant

Phrixipollenites[62]

P. sp.

  • Cañadón Lahuincó
  • Las Chacritas Member

Pollen

Upland

Temperate, relatively dry

Affinities with the family Podocarpaceae.

Pinuspollenites[59]

  • P. globosaccus
  • Cañadon Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Pollen

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Pinaceae in the Pinopsida. Conifer pollen from medium to large arboreal plants.

Podocarpidites[59][62]

  • P. verrucosus
  • P. astrictus
  • P. ellipticus
  • P. multesimus
  • P. variabilis
  • P. sp. cf. P. radiatus
  • P. sp. cf. P. verrucosus
  • P. sp. 1
  • Cañadón Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Pollen

Upland

Temperate, relatively dry

Affinities with the family Podocarpaceae in the Pinopsida.

 
Extant Podocarpus Cone, example of the Podocarpaceae. Podocarpidites is similar to the pollen found on this genus

Podocarpoxylon[68]

  • P. spp.
  • Cañadon Bagual
  • Las Chacritas Member

Fossil Wood

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Podocarpaceae in the Pinopsida.

Podosporites[59]

  • P. variabilis
  • P. sp. 1
  • Cañadón Lahuincó
  • Cañadón Caracoles
  • Las Chacritas Member

Pollen

Upland

Temperate, relatively dry

Affinities with the family Podocarpaceae in the Pinopsida.

Protocupressinoxylon[68]

  • P. spp.
  • Cañadon Bagual
  • Las Chacritas Member

Fossil Wood

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Hirmeriellaceae in the Pinopsida.

Prototaxoxylon[68]

  • P. spp.
  • Cañadon Bagual
  • Las Chacritas Member

Fossil Wood

Upland, Lowland and Riverside

?Warm to temperate, relatively wet

Affinities with the family Taxaceae in the Pinopsida. Alternatively, it can represent woods of the "Mesozoic Prototaxoxylon Group", a unnamed conifer family of possible Permian affinities.[73]


See also

edit

References

edit
  1. ^ a b Cabaleri, N. G.; Benavente, C. A. (2013). "Sedimentology and paleoenvironments of the Las Chacritas carbonate paleolake, Cañadón Asfalto Formation (Jurassic), Patagonia, Argentina". Sedimentary Geology. 284 (4): 91–105. Bibcode:2013SedG..284...91C. doi:10.1016/j.sedgeo.2012.11.008. hdl:11336/182449. Retrieved 29 July 2022.
  2. ^ Gallego, O.F.; Cabaleri, N.G. (2005). "Conchóstracos de la Formación Cañadón Asfalto (Jurásico Medio – Superior): análisis preliminar de su distribución estratigráfica". Ameghiniana: II Simposio Argentino del Jurásico (Buenos Aires). 42 (2): 51.
  3. ^ a b c d e Tasch, P.; Volkheimer, W. (1970). "Jurassic conchostracans from Patagonia". The University of Kansas Paleontological Contributions. 50 (3): 24–48. Retrieved 29 July 2022.
  4. ^ a b c d e Monferran, M. D.; Gallego, O. F.; Cabaleri, N. G. (2020). "Revision of Two Spinicaudatan Species from the Cañadón Asfalto Formation (Jurassic), Patagonia Argentina". Zoological Studies. 59 (3): 112–123. doi:10.6620/ZS.2020.59-37. PMC 7689052. PMID 33262859.
  5. ^ Gallego, O.F.; Shen, Y.B.; Cabaleri, N.G.; Hernández, M. (2010). "The genus Congestheriella Kobayashi, 1954 ("Conchostraca", Diplostraca, Afrograptioidea): redescription and new combination to Isaura olsoni Bock from Venezuela and a new species from Argentina (Upper Jurassic)". Alavesia. 3 (6): 11–24. Retrieved 2022-07-29.
  6. ^ a b c d e f Musacchio, E.A. (1995). "Estratigrafía y micropalentología del Jurásico y el Cretácico en la comarca del Valle Medio del Río Chubut, Argentina". Actas 6º Congreso Argentino de Paleontología y Bioestratigrafía. 6 (12): 179–187.
  7. ^ a b c d Monferran, M. D.; Gallego, O. F.; Genise, J. F. (2009). "Nuevos datos sobre los capullos fósiles (Tricoptera) del Jurásico de la Patagonia Argentina". Comunicaciones Científicas y Tecnológicas. Universidad Nacional del Nordeste. Retrieved 13 February 2024.
  8. ^ a b c Mateo Daniel, Monferran; Lara, María Belén; Gallego, Oscar Florencio; Ballent, Sara; Cabaleri, Nora; Armella, Claudia (2010). "Nuevos registros de invertebrados en la Formación Cañadón Asfalto, Depocentro Fossati (Jurásico Medio-Superior), Provincia del Chubut, Argentina". Simposio; IV Simposio Argentino del jurásico y sus Límites. 9 (1): 23.
  9. ^ a b c d e f g h i j k l m n o p q r s t u Cabaleria, Nora G.; Benavente, Cecilia A.; Monferranc, Mateo D.; Narváez, Paula L.; Volkheimer, Wolfgang; Gallego, Oscar F.; Do Campoa, Margarita D. (2011). "Sedimentology and palaeontology of the Upper Jurassic Puesto Almada Member (Cañadón Asfalto Formation, Fossati sub-basin), Patagonia Argentina: Palaeoenvironmental and climatic significance". Sedimentary Geology. 296 (1): 103–121. doi:10.1016/j.sedgeo.2013.08.011. hdl:11336/2418.
  10. ^ Ballent, S.C.; Díaz, A.R. (2011). "Contribution to the taxonomy, distribution and paleoecology of the early representatives of Penthesilenula Rossetti & Martens, 1998 (Crustacea, Ostracoda, Darwinulidae) from Argentina, with the description of a new species". Hydrobiologia. 688 (10): 125–138. doi:10.1007/s10750-011-0658-8. S2CID 254547791. Retrieved 2022-07-29.
  11. ^ a b c d Martínez, S.; Gallego, O.F; Cabaleri, N. (2007). "Nueva fauna de moluscos de la Formación Cañadón Asfalto (Jurásico Medio a Superior) Chubut, Argentina". Ameghiniana. 44 (4): 96. Retrieved 2022-07-29.
  12. ^ a b Monferran, Mateo Daniel; Cabaleri, Nora; Armella, Claudia; Martínez, Sergio; Gallego, Oscar; Zacarías, Iracema; Calathaki, Hugo Barrios (2023-01-31). "Freshwater bivalves and their environmental conditions in a Jurassic lacustrine system (Cañadón Asfalto Formation) from Patagonia, Argentina". Andean Geology. 50 (2): 248. doi:10.5027/andgeoV50n2-3461. ISSN 0718-7106.
  13. ^ a b c d e Frenguelli, J. (1949). "Los estratos con "Estheria" en el Chubut (Patagonia)". Revista de la Asociación Geológica Argentina. 4 (4): 11–24. Retrieved 27 December 2021.
  14. ^ Cabaleri, N.; Volkheimer, W.; Armella, C.; Gallego, O.; Silva Nieto, D.; Páez, M.; Koukharsky, M. (2010). "Estratigrafía, análisis de facies y paleoambientes de la Formación Cañadón Asfalto en el depocentro jurásico Cerro Cóndor, provincia del Chubut". Revista de la Asociación Geológica Argentina. 66 (3): 349–367. Retrieved 2022-09-05.
  15. ^ a b Petrulevicius, F. (2007). "A new species of Bittacidae sensu lato (Mecoptera) from the Callovian-Oxfordian: new Jurassic locality of insect body fossils from Patagonia, Argentina". Proceedings of the 4th International Congress of Paleoentomology, International Palaeoentomological Society, Vitoria-Gasteiz, Diputación Forai de Álava, Spain. 275 (4): 23. Retrieved 2022-07-29.
  16. ^ a b c Andrade-Morraye, M.; Genise, J. (2005). "An association of fossil larval tubes and head capsules of Chironomidae (Diptera) from the Jurassic (Callovian–Oxfordian) Cañadón Asfalto Formation, Patagonia, Argentina". Proceedings of the Fossils X3, International Paleoentomological Society, Pretoria. 3 (1): 5.
  17. ^ a b Gallego, O. F.; Cabaleri, N. G.; Armella, C.; Volkheimer, W.; Ballent, S. C.; Martínez, S.; Páez, M. A. (2011). "Paleontology, sedimentology and paleoenvironment of a new fossiliferous locality of the Jurassic Cañadón Asfalto Formation, Chubut Province, Argentina". Journal of South American Earth Sciences. 31 (1): 54–68. Bibcode:2011JSAES..31...54G. doi:10.1016/j.jsames.2010.11.001. Retrieved 2022-07-29.
  18. ^ López-Arbarello, A.; Rauhut, O. W.; Moser, K. (2008). "Jurassic fishes of Gondwana". Revista de la Asociación Geológica Argentina. 63 (4): 586–612. Retrieved 29 July 2022.
  19. ^ a b c Turazzini, G. F.; Appella-Guiscafre, L. S.; Lires, A. I.; Garberoglio, F.; Canessa Leandro, A.; Gómez, R. O.; Rougier, G. W. (2017). "Promising future: a new mammal-bearing microvertebrate locality from the Cañadón Asfalto formation (Jurassic; Chubut, Argentina)". Ameghiniana: Congreso; XI Congreso de la Asociación Paleontológica Argentina. XI (1): 54–52. Retrieved 1 August 2022.
  20. ^ a b c d Escapa, I.H.; Sterli, J.; Pol, D.; Nicoli, L. (2008). "Jurassic Tetrapods and Flora of Cañadon Asfalto Formation in Cerro Cóndor Area, Chubut Province" (PDF). Revista de la Asociación Geológica Argentina. 63 (4): 613–624. Archived from the original (PDF) on 2014-09-24. Retrieved 2014-09-17.
  21. ^ Barcelos, L. A.; dos Santos, R. O. (2022). "The Lissamphibian Fossil Record of South America". Palaeobiodiversity and Palaeoenvironments. 176 (4): 341–405. doi:10.1007/s12549-022-00536-0. S2CID 250077749. Retrieved 1 August 2022.
  22. ^ Báez, A. M.; Nicoli, L. (2008). "A new species of Notobatrachus (Amphibia, Salientia) from the Middle Jurassic of northwestern Patagonia". Journal of Paleontology. 82 (2): 372–376. Bibcode:2008JPal...82..372B. doi:10.1666/06-117.1. hdl:11336/135748. S2CID 130032431. Retrieved 1 August 2022.
  23. ^ a b Sterli, J.; De La Fuente, M. S.; Rougier, G. W. (2018). "New remains of Condorchelys antiqua (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles". Journal of Vertebrate Paleontology. 38 (4): (1)-(17). Bibcode:2018JVPal..38....1S. doi:10.1080/02724634.2018.1480112. hdl:11336/99525. S2CID 109556104. Retrieved 1 August 2022.
  24. ^ a b Sterli, J.; Vlachos, E.; Puerta, P.; Oriozabala, C.; Krause, M. (2021). "Contribution to the diversity of the fossil record of turtles (Testudinidata) from Chubut province (Argentina) and its significance in understanding the evolution of turtles in southern South America". Publicación Electrónica de la Asociación Paleontológica Argentina. 21 (1): 118–160. Retrieved 31 March 2022.
  25. ^ a b Apesteguía, S. N.; Gómez, R. L. O.; Rougier, G. W. (2012). "A basal sphenodontian (Lepidosauria) from the Jurassic of Patagonia: New insights on the phylogeny and biogeography of Gondwanan rhynchocephalians". Zoological Journal of the Linnean Society. 166 (2): 342. doi:10.1111/j.1096-3642.2012.00837.x. hdl:20.500.12110/paper_00244082_v166_n2_p342_Apesteguia.
  26. ^ Sterli, J.; Pol, D.; Rougier, G.; Rauhut, O.; Baez, A.; Carballido, J.; Nicoli, L. (2010). "Nuevos aportes a la diversidad taxonómica de vertebrados de la Formación Cañadón Asfalto (Jurásico Medio) de la provincia del Chubut, Argentina". IV Simposio del Jurásico y sus Límites, Bahía Blanca, Argentina. 4 (1): 22. Retrieved 2 August 2022.
  27. ^ Codorniú, L.; Carabajal, A.P.; Pol, D.; Unwin, D.; Rauhut, O.W.M (2016). "A Jurassic pterosaur from Patagonia and the origin of the pterodactyloid neurocranium". PeerJ. 4: e2311. doi:10.7717/peerj.2311. PMC 5012331. PMID 27635315.
  28. ^ Fernandes, A.E; Pol, D.; Rauhut, O.W.M. (2024). "A monofenestratan pterosaur from the late Early Jurassic of the Chubut province of Patagonia, Argentina" (PDF). EAVP2024 Abstract Book and Programme. 21 (1): 18.
  29. ^ a b Rauhut, O.W.M. (2005). "Osteology and relationships of a new theropod dinosaur from the Middle Jurassic of Patagonia". Palaeontology. 48 (1): 87–110. Bibcode:2005Palgy..48...87R. doi:10.1111/j.1475-4983.2004.00436.x.
  30. ^ a b Unwin, D. M.; Rauhut, O. W. M.; Haluza, A. (2004). "The first "rhamphorhynchoid" from South America and the early history of pterosaurs". Geobiologie. 74 (4): 235–237. Retrieved 17 April 2023.
  31. ^ Gomez, K. L. (2023). "Diversidad, evolución y diversificación temprana de los Eusaurópodos basales durante el Jurásico Temprano-Medio en Patagonia". Tesis de Postgrado: 1–645. Retrieved 28 May 2023.
  32. ^ Ezcurra, M. D.; Pol, D. (2009). "Theropod remains from a new bone–bed of the Cañadón Asfalto Formation (Middle Jurassic), Chubut Province, Argentina". XXIV Jornadas Argentinas de Paleontología de Vertebrados, San Rafael, Mendoza, Argentina. 14 (1): 31. Retrieved 28 May 2023.
  33. ^ Oliver W. M. Rauhut; Diego Pol (2019). "Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs". Scientific Reports. 9 (1): Article number 18826. Bibcode:2019NatSR...918826R. doi:10.1038/s41598-019-53672-7. PMC 6906444. PMID 31827108.
  34. ^ a b c d e f g h Castiblanco Ramírez, P. M. (2016). "Estudio de la diversidad taxonómica de dinosaurios terópodos de la formación cañadón asfalto, en la provincia del Chubut, Argentina, a partir de un análisis morfométrico de sus dientes" (PDF). Tesis Propuesta Como Cumplimiento de los Requisitos Para el Pregrado de Geociencias, Universidad de los Andes. 1 (1): 1–41. Retrieved 1 August 2022.
  35. ^ Pradelli, L. A.; Pol, D.; Ezcurra, M. D. (2024). "New dinosaur remains increase theropod diversity in the Cañadón Asfalto Formation (Lower Jurassic), Chubut Province, Argentina". Journal of Systematic Palaeontology. 22 (1). 2318262. doi:10.1080/14772019.2024.2318262.
  36. ^ a b Novas, Fernando (2009). The Age of Dinosaurs in South America. Indiana University Press. p. 118. ISBN 978-0253352897.
  37. ^ Diego Pol & Oliver W. M. Rauhut (2012). "A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 279 (1804): 3170–5. doi:10.1098/rspb.2012.0660. PMC 3385738. PMID 22628475.
  38. ^ Rauhut, O. W. (2007). "A fragmentary theropod skull from the Middle Jurassic of Patagonia". Ameghiniana. 44 (2): 479–483. Retrieved 11 July 2023.
  39. ^ Rauhut, O. W. (2004). "Braincase structure of the Middle Jurassic theropod dinosaur Piatnitzkysaurus". Canadian Journal of Earth Sciences. 41 (9): 1109–1122. Bibcode:2004CaJES..41.1109R. doi:10.1139/e04-053. Retrieved 1 August 2022.
  40. ^ "Table 4.1," in Weishampel, et al. (2004). Page 72.
  41. ^ Leonardi, G. (1994). "Annotated Atlas of South America Tetrapod Footprints (Devonian to Holocene) with an Appendix on Mexico and Central America". Journal of Vertebrate Paleontology. 16 (3). Brasília: República Federativa do Brasil, Ministério de Minas e Energia, Secretaria de Minas e Metalurgia, Companhia de Pesquisa de Recursos Minerais: 599. doi:10.1080/02724634.1996.10011348. Retrieved 10 August 2022.
  42. ^ Davie, Ian; Escapa, gnacio; Pol, Diego; Carballido, Jose Luis (2018). "¿Qué Comían Los Gigantes? Restos Vegetales Asociados A Un Saurópodo En La Formación Cañadón Asfalto (Jurásico Inferior-Medio) Chubut, Argentina". Reunión de Comunicaciones de la Asociación Paleontológica Argentina. 12 (1): 8. Retrieved 24 March 2024.
  43. ^ D. Pol; J. Ramezani; K. Gomez; J. L. Carballido; A. Paulina Carabajal; O. W. M. Rauhut; I. H. Escapa; N. R. Cúneo (2020). "Extinction of herbivorous dinosaurs linked to Early Jurassic global warming event". Proceedings of the Royal Society B: Biological Sciences. 287 (1939): Article ID 20202310. doi:10.1098/rspb.2020.2310. PMC 7739499. PMID 33203331. S2CID 226982302.
  44. ^ Holwerda, F. M.; Pol, D.; Rauhut, O. W. (2015). "Using dental enamel wrinkling to define sauropod tooth morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina". PLOS ONE. 10 (2): e0118100. Bibcode:2015PLoSO..1018100H. doi:10.1371/journal.pone.0118100. PMC 4333578. PMID 25692466.
  45. ^ a b c d Holwerda, F. M. (2019). "Revision of basal sauropods from the Middle Jurassic of Patagonia and the early evolution of sauropods" (PDF). (Doctoral dissertation, lmu) Ludwig- Maximilians-Universität München. 2 (1): 1–250. Retrieved 1 August 2022.
  46. ^ Rahut, O.W.M. (2003). "A Dentary of Patagosaurus (Sauropoda) from the Middle Jurassic of Patagonia". Ameghiniana. 40 (3): 425–432. ISSN 0002-7014.
  47. ^ Holwerda, F. M.; Rauhut, O. W.; Pol, D. (2021). "Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi Bonaparte, 1979 (Sauropoda: Cetiosauridae)". Geodiversitas. 43 (16): 575–643. doi:10.5252/geodiversitas2021v43a16. S2CID 237537773.
  48. ^ Becerra, M. G.; Carballido, J. L.; Pol, D. (2016). "Primer registro de un Sauropoda no-Eusauropoda del Toarciano bajo-medio de Cañadón Asfalto[First report of a non-Eusauropoda Sauropoda from the lower-middle Toarcian of Cañadón Asfalto]". XXX Jornadas Argentinas de Paleontología de Vertebrados. Resúmenes. Ameghiniana. 53 (6): 8. Retrieved 31 March 2022.
  49. ^ Becerra, M. G.; Gomez, K. L.; Pol, D. (2017). "A sauropodomorph tooth increases the diversity of dental morphotypes in the Cañadón Asfalto Formation (Early–Middle Jurassic) of Patagonia". Comptes Rendus Palevol. 16 (8): 832–840. Bibcode:2017CRPal..16..832B. doi:10.1016/j.crpv.2017.08.005. hdl:11336/42733. Retrieved 2 August 2022.
  50. ^ Carballido, J. L.; Holwerda, F. M.; Pol, D.; Rauhut, O. W. (2017). "An Early Jurassic sauropod tooth from Patagonia (Cañadón Asfalto Formation): implications for sauropod diversity". Publicación Electrónica de la Asociación Paleontológica Argentina. 17 (2): 50–57. Retrieved 31 March 2022.
  51. ^ a b c d Becerra, M. G. (2016). "Dinosaurios ornitisquios de la Formación Cañadón Asfalto (Jurásico temprano a medio), Chubut, Argentina: anatomía y relaciones filogenéticas" (PDF). (Doctoral Dissertation, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales).: 1–649. Retrieved 15 October 2021.
  52. ^ Pol, D.; Rauhut, O.W.M.; Becerra, M. (2011). "A Middle Jurassic heterodontosaurid dinosaur from Patagonia and the evolution of heterodontosaurids". Naturwissenschaften. 98 (5): 369–379. Bibcode:2011NW.....98..369P. doi:10.1007/s00114-011-0780-5. PMID 21452054. S2CID 22636871.
  53. ^ Becerra, M.C.; Pol, D.; Rauhut, O.W.M.; Cerda, I.A. (2016). "New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids". Journal of Paleontology. 90 (3): 555–577. doi:10.1017/jpa.2016.24. hdl:11336/117485. S2CID 56436933.
  54. ^ a b c Gaetano, L. C.; Rougier, G. W. (2012). "First amphilestid from South America: a molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina". Journal of Mammalian Evolution. 19 (4): 235–248. doi:10.1007/s10914-012-9194-1. hdl:11336/68489. S2CID 254698557. Retrieved 1 August 2022.
  55. ^ a b Gaetano, L.C.; Rougier, G.W. (2011). "New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny". Journal of Vertebrate Paleontology. 31 (4): 829–843. Bibcode:2011JVPal..31..829G. doi:10.1080/02724634.2011.589877. hdl:11336/68497. S2CID 85069761. Retrieved 1 August 2022.
  56. ^ Martin, T.; Rauhut, O. W. (2005). "Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth". Journal of Vertebrate Paleontology. 25 (2): 414–425. doi:10.1671/0272-4634(2005)025[0414:MADOAP]2.0.CO;2. S2CID 86312639. Retrieved 1 August 2022.
  57. ^ a b Rougier, G. W.; Martinelli, A. G.; Forasiepi, A. M.; Novacek, M. J. (2007). "New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships". American Museum Novitates (3): 1–54. CiteSeerX 10.1.1.693.6352. Retrieved 1 August 2022.
  58. ^ a b Olivera, D. E.; Quattrocchio, M. E.; Zavattieri, A. M. (2015). "The fungal spore Annella capitata Srivastava from the Jurassic (Late Toarcian–Late Bajocian) Cañadón Asfalto Formation of Patagonia, Argentina" (PDF). Palynology. 39 (2): 258–269. Bibcode:2015Paly...39..258O. doi:10.1080/01916122.2014.955616. hdl:11336/6627. S2CID 130822113. Retrieved 29 July 2022.
  59. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af Olivera, D. E.; Zavattieri, A. M.; Quattrocchio, M. E. (2015). "The palynology of the Cañadón Asfalto formation (Jurassic), Cerro Cóndor depocentre, Cañadón Asfalto Basin, Patagonia, Argentina: palaeoecology and palaeoclimate based on ecogroup analysis". Palynology. 39 (3): 362–386. Bibcode:2015Paly...39..362O. doi:10.1080/01916122.2014.988382. hdl:11336/47675. S2CID 129591727. Retrieved 4 September 2023.
  60. ^ Hunter, M. A.; Riley, T. R.; Cantrill, D. J.; Flowerdew, M. J.; Millar, I. L. (2006). "A new stratigraphy for the Latady Basin, Antarctic Peninsula: Part 1, Ellsworth land volcanic group" (PDF). Geological Magazine. 143 (6): 777–796. Bibcode:2006GeoM..143..777H. doi:10.1017/S0016756806002597. S2CID 130465133. Retrieved 5 September 2022.
  61. ^ Monferran, Mateo Daniel; Zacarias, Iracema; Gallego, Oscar Florencio (2011). "Cerrito Caracoles: una nueva localidad con invertebrados fósiles de la Formación Cañadón Asfalto (Jurásico Medio-Superior) Chubut, Argentina". XVIII Reunión de Comunicaciones Científicas y Tecnológicas. 8 (1): 112.
  62. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Volkheimer, W.; Quattrocchio, M.; Cabaleri, N.; García, V. (2011). "Palynology and paleoenvironment of the Jurassic lacustrine Cañadón Asfalto Formation at Cañadón Lahuincó locality, Chubut Province, Central Patagonia, Argentina". Revista Española de Micropaleontología. 40 (1–2): 77–96. ISSN 0556-655X.
  63. ^ a b c d e f g h i Escapa, I.H. (2009). "La tafoflora de la Formación Cañadón Asfalto, Jurasico Medio superior de Chubut. Taxonomía, bioestratigrafia y paleofitogeografia". PhD Thesis. Universidad del Comahue, Bariloche.
  64. ^ a b c d e f g h i j k l m n o Escapa, Ignacio H.; Elgorriaga, Andres; Nunes, Giovanni Cristián; Cunéo, Rubèn; Scasso, Roberto A (2021). "Megafloras del Jurásico en la Cuenca de Cañadón Asfalto: Biomas en transformación". In book: Relatorio XXI Congreso Geológico Argentino - Geología y Recursos Naturales de la Provincia del ChubutPublisher: Asociación Geológica Argentina. 21 (6): 887–890. Retrieved 8 September 2022.
  65. ^ Elgorriaga, A.; Escapa, I.; Cuneo, R. (2016). "Peltaspermales from the Jurassic of Canadón Asfalto Basin. In Chubut Province, Argentina". Boletın de la Asociacion Latinoamericana de Paleobotanica y Palinologıa: XIV International Palynological Congress–X International Organisation of Palaeobotany Conference. 16 (1): 203–204. Retrieved 22 July 2023.
  66. ^ a b c d e Sender, L.M.; Escapa, I.H.; Elgorriaga, A.; Cúneo, R.; Scasso, R.A. (2016). "Diversidad macroflorística del yacimiento "Pomelo" (Toarciano-Aaleniano) en el área de Cerro Cóndor (Chubut, Argentina)". VI Simposio Argentino del Jurásico. 6 (37).
  67. ^ Elgorriaga, A.; Escapa, I.; Cúneo, N. R. (2019). "Relictual Lepidopteris (Peltaspermales) from the Early Jurassic Cañadón Asfalto Formation, Patagonia, Argentina". International Journal of Plant Sciences. 180 (6): 578–596. doi:10.1086/703461. S2CID 195435840. Retrieved 27 December 2021.
  68. ^ a b c d e Gnaedinger, S.; Cúneo, N.R. (2009). "Maderas de Gimnospermas de la Formación Cañadón Asfalto, Chubut, Argentina". Xiv Simposio Argentino de Paleobotánica y Palinología. 14 (1): 46. Retrieved 28 March 2024.
  69. ^ Contreras, D.L.; Escapa, I.; Cúneo, N. R.; Iribarren, R. C. (2019). "Reconstructing the early evolution of the cupressaceae: A whole-plant description of a new austrohamia species from the cañadón asfalto formation (early Jurassic), Argentina". International Journal of Plant Sciences. 180 (8): 834–868. doi:10.1086/704831. S2CID 202862782. Retrieved 27 December 2021.
  70. ^ Bodnar, J.; Escapa, I.; Cúneo, N. R.; Gnaedinger, S. (2013). "First Record of Conifer Wood from the Cañadón Asfalto Formation (Early-Middle Jurassic), Chubut Province, Argentina". Ameghiniana. 50 (2): 227–239. doi:10.5710/AMGH.26.04.2013.620. hdl:11336/3391. S2CID 130814427. Retrieved 27 December 2021.
  71. ^ Hofmann, Christa-Ch.; Odgerel, Nyamsambuu; Seyfullah, Leyla J. (2021). "The occurrence of pollen of Sciadopityaceae Luerss. through time". Fossil Imprint. 77 (2): 271–281. doi:10.37520/fi.2021.019. S2CID 245555379. Retrieved 27 December 2021.
  72. ^ Crisafulli, Alexandra; Dutra, Tânia (2009-12-30). "Kaokoxylon zalesskyi (Sahni) Maheshwari en los niveles superiores de la Secuencia Santa Maria 2 (Formación Caturrita), Cuenca de Paraná, Brasil". Gaea - Journal of Geoscience. 5 (2): 61–69. doi:10.4013/gaea.2009.52.02. ISSN 1983-3628.
  73. ^ Philippe, Marc; Afonin, Maxim; Delzon, Sylvain; Jordan, Gregory J.; Terada, Kazuo; Thiébaut, Mélanie (2019). "A paleobiogeographical scenario for the Taxaceae based on a revised fossil wood record and embolism resistance". Review of Palaeobotany and Palynology. 263: 147–158. doi:10.1016/j.revpalbo.2019.01.003. ISSN 0034-6667.