Portal:Energy

(Redirected from Energy portal)
Main pageNew articles & Tasks
The Energy Portal
Welcome to Wikipedia's Energy portal, your gateway to energy. This portal is aimed at giving you access to all energy related topics in all of its forms.
Page contents: Selected articleSelected imageSelected biographyDid you know?General imagesQuotationsRelated portalsWikiprojectsMajor topicsCategoriesHelpAssociated Wikimedia

Introduction

A plasma globe, using electrical energy to create plasma, light, heat, movement and a faint sound

Energy (from Ancient Greek ἐνέργεια (enérgeia) 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed; matter and energy may also be converted to one another. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

Forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, the internal energy contained within a thermodynamic system, and rest energy associated with an object's rest mass.

All living organisms constantly take in and release energy. The Earth's climate and ecosystems processes are driven primarily by radiant energy from the sun. The energy industry provides the energy required for human civilization to function, which it obtains from energy resources such as fossil fuels, nuclear fuel, renewable energy, and geothermal energy. (Full article...)

Selected article

Petroleum (crude oil) is a naturally occurring liquid fossil fuel found in rock formations in the Earth, consisting of a complex mixture of hydrocarbons of various lengths. Due to its high energy density, easy transportability and relative abundance, petroleum has become the world's most important source of energy since the mid 1950s. Most petroleum is used for producing gasoline (petrol) and fuel oil, both important primary energy sources. Petroleum is also the raw material for many chemical products.

Most petroleum is extracted from oil wells found in oil fields. Although it is also possible to extract petroleum from oil shale or tar sands, both of which are known to exist in large quantities, doing so at low cost and without impacting the environment remains a challenge. The first modern oil well was drilled in 1848 in Azerbaijan, but it was the introduction of the internal combustion engine in the early 20th century that provided the demand that has largely sustained the industry to this day. The top three oil producing countries are Saudi Arabia, Russia, and the United States.

Burning oil releases carbon dioxide into the atmosphere, one of the major greenhouse gases contributing to global warming. Bioethanol and biodiesel are already used to some extent as alternatives, notably in Brazil, as are hybrid electric vehicles. Trials using hydrogen fuel are also in progress. There are further concerns about security of supply, oil price rises and whether world oil production may reach a peak, before declining, as predicted by Hubbert peak theory.

Selected image

Photo credit: Johnson Space Center/NASA
Tropical cyclones feed on the heat released when moist air rises and the water vapor condenses.

Did you know?

Selected biography

{{{caption}}}
William Thomson, 1st Baron Kelvin, OM, GCVO, PC, PRS, FRSE, (26 June 1824 – 17 December 1907), widely known for developing the Kelvin scale of absolute temperature measurement, was a mathematical physicist, engineer, and outstanding leader in the physical sciences of the 19th century. He did important work in the mathematical analysis of electricity and thermodynamics, and did much to unify the emerging discipline of physics in its modern form.

Born in Ireland, Thomson studied at the University of Glasgow, Scotland. On graduating, he became a mathematics teacher at the Royal Belfast Academical Institution. During his life Thomson published more than 600 scientific papers and filed over 70 patents.

As early as 1845 Thomson pointed out that the experimental results of William Snow Harris were in accordance with the laws of Coulomb. Over the period 1855 to 1867, Thomson collaborated with Peter Guthrie Tait the Treatise on Natural Philosophy that unified the various branches of physical science under the common principle of energy. His inventions included the current balance for the precise specification of the ampere, the standard unit of electric current.

In 1893, Thomson headed an international commission to decide on the design of the Niagara Falls power station. Despite his previous belief in the superiority of direct current electric power transmission, he agreed to use alternating current after seeing a Westinghouse demonstration at the Chicago World's Fair.

In the news

22 August 2024 – Russian invasion of Ukraine
The International Atomic Energy Agency announces an investigation of the Kursk Nuclear Power Plant following accusations from Russia that a Ukrainian drone targeted the power plant. (Reuters)
22 August 2024 – Belarus–China relations
Belarus and China agree to greatly strengthen mutual trade, financial, energy, and security cooperation, which includes enhancing industrial supply chains and collaboration with the Guangdong-Hong Kong-Macau Greater Bay Area. (Reuters)

General images

The following are images from various energy-related articles on Wikipedia.

Quotations

WikiProjects

Major topics

Help

Puzzled by energy?
Can't answer your question?
Don't understand the answer?


For further ideas, to leave a comment, or to learn how you can help improve and update this portal, see the talk page.

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals

Purge server cache