Electric bacteria are forms of bacteria that directly consume and excrete electrons at different energy potentials without requiring the metabolization of any sugars or other nutrients.[1] This form of life appears to be especially adapted to low-oxygen environments. Most life forms require an oxygen environment in which to release the excess of electrons which are produced in metabolizing sugars. In a low oxygen environment, this pathway for releasing electrons is not available. Instead, electric bacteria "breathe" metals instead of oxygen, which effectively results in both an intake of and excretion of electrical charges.[2]

Some electric bacteria:

See also

edit

References

edit
  1. ^ Brahic, Catherine. "Meet the electric life forms that live on pure energy". New Scientist. Retrieved 2019-02-18.
  2. ^ Fox-Skelly, Jasmin. "There are microbes that eat and poo nothing but electricity". www.bbc.com. Retrieved 2019-05-02.
  3. ^ Gorby, Yuri A.; Yanina, Svetlana; McLean, Jeffrey S.; Rosso, Kevin M.; Moyles, Dianne; Dohnalkova, Alice; Beveridge, Terry J.; Chang, In Seop; Kim, Byung Hong; Kim, Kyung Shik; Culley, David E.; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad A.; Hill, Eric A. (2006-07-25). "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms". Proceedings of the National Academy of Sciences of the United States of America. 103 (30): 11358–11363. doi:10.1073/pnas.0604517103. ISSN 0027-8424. PMC 1544091. PMID 16849424.
  4. ^ Yalcin, Sibel Ebru; O’Brien, J. Patrick; Gu, Yangqi; Reiss, Krystle; Yi, Sophia M.; Jain, Ruchi; Srikanth, Vishok; Dahl, Peter J.; Huynh, Winston; Vu, Dennis; Acharya, Atanu; Chaudhuri, Subhajyoti; Varga, Tamas; Batista, Victor S.; Malvankar, Nikhil S. (October 2020). "Electric field stimulates production of highly conductive microbial OmcZ nanowires". Nature Chemical Biology. 16 (10): 1136–1142. doi:10.1038/s41589-020-0623-9. ISSN 1552-4469. PMC 7502555. PMID 32807967.
  5. ^ S, Cheng; D, Xing; Df, Call; Be, Logan (2009-05-15). "Direct biological conversion of electrical current into methane by electromethanogenesi". Environmental Science & Technology. 43 (10): 3953–3958. doi:10.1021/es803531g. ISSN 0013-936X. PMID 19544913.
  6. ^ Deutzmann, Jörg S.; Sahin, Merve; Spormann, Alfred M. (2015-04-21). "Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis". mBio. 6 (2): e00496–15. doi:10.1128/mBio.00496-15. ISSN 2150-7511. PMC 4453541. PMID 25900658.
  7. ^ Grinter, Rhys; Kropp, Ashleigh; Venugopal, Hari; Senger, Moritz; Badley, Jack; Cabotaje, Princess R.; Jia, Ruyu; Duan, Zehui; Huang, Ping; Stripp, Sven T.; Barlow, Christopher K.; Belousoff, Matthew; Shafaat, Hannah S.; Cook, Gregory M.; Schittenhelm, Ralf B. (March 2023). "Structural basis for bacterial energy extraction from atmospheric hydrogen". Nature. 615 (7952): 541–547. doi:10.1038/s41586-023-05781-7. ISSN 1476-4687. PMC 10017518. PMID 36890228.
  8. ^ Kropp, Ashleigh; Greening, Chris; Grinter, Rhys. "Electricity from thin air: an enzyme from bacteria can extract energy from hydrogen in the atmosphere". The Conversation. Retrieved 2023-03-28.
  9. ^ Ueki, Toshiyuki; Walker, David J. F.; Woodard, Trevor L.; Nevin, Kelly P.; Nonnenmann, Stephen S.; Lovley, Derek R. (2020-03-20). "An Escherichia coli Chassis for Production of Electrically Conductive Protein Nanowires". ACS Synthetic Biology. 9 (3): 647–654. bioRxiv 10.1101/856302. doi:10.1021/acssynbio.9b00506. ISSN 2161-5063. PMID 32125829. S2CID 212406633.
  10. ^ "Electric bacteria create currents out of thin—and thick—air". www.science.org. Retrieved 2023-03-28.
  11. ^ Rowe, Annette R.; Chellamuthu, Prithiviraj; Lam, Bonita; Okamoto, Akihiro; Nealson, Kenneth H. (2014). "Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism". Frontiers in Microbiology. 5: 784. doi:10.3389/fmicb.2014.00784. ISSN 1664-302X. PMC 4294203. PMID 25642220.
  12. ^ Singer, Emily (June 2016). "New Life Found That Lives Off Electricity". Quanta Magazine.