The (continuous) Heisenberg group
N
{\displaystyle N}
is the 3-dimensional Lie group that can be represented by triples of real numbers with multiplication rule
⟨
x
,
y
,
t
⟩
⟨
a
,
b
,
c
⟩
=
⟨
x
+
a
,
y
+
b
,
t
+
c
+
x
b
⟩
.
{\displaystyle \langle x,y,t\rangle \langle a,b,c\rangle =\langle x+a,y+b,t+c+xb\rangle .}
The discrete Heisenberg group
Γ
{\displaystyle \Gamma }
is the discrete subgroup of
N
{\displaystyle N}
whose elements are represented by the triples of integers. Considering
Γ
{\displaystyle \Gamma }
acts on
N
{\displaystyle N}
on the left, the quotient manifold
Γ
∖
N
{\displaystyle \Gamma \backslash N}
is called the Heisenberg manifold .
The Heisenberg group acts on the Heisenberg manifold on the right. The Haar measure
μ
=
d
x
∧
d
y
∧
d
t
{\displaystyle \mu =dx\wedge dy\wedge dt}
on the Heisenberg group induces a right-translation-invariant measure on the Heisenberg manifold. The space of complex-valued square-integrable functions on the Heisenberg manifold has a right-translation-invariant orthogonal decomposition:
L
2
(
Γ
∖
N
)
=
⊕
n
∈
Z
H
n
{\displaystyle L^{2}(\Gamma \backslash N)=\oplus _{n\in \mathbb {Z} }H_{n}}
where
H
n
=
{
f
∈
L
2
(
Γ
∖
N
)
∣
f
(
Γ
⟨
x
,
y
,
t
+
s
⟩
)
=
exp
(
2
π
i
n
s
)
f
(
Γ
⟨
x
,
y
,
t
⟩
)
}
{\displaystyle H_{n}=\{f\in L^{2}(\Gamma \backslash N)\mid f(\Gamma \langle x,y,t+s\rangle )=\exp(2\pi ins)f(\Gamma \langle x,y,t\rangle )\}}
.
Fundamental unitary representation of the Heisenberg group
edit
For each real number
λ
≠
0
{\displaystyle \lambda \neq 0}
, the fundamental unitary representation
U
λ
{\displaystyle U_{\lambda }}
of the Heisenberg group is an irreducible unitary representation of
N
{\displaystyle N}
on
L
2
(
R
)
{\displaystyle L^{2}(\mathbb {R} )}
defined by
(
U
λ
(
⟨
a
,
b
,
c
⟩
)
ψ
)
(
x
)
=
e
2
π
i
λ
(
c
+
b
x
)
ψ
(
x
+
a
)
{\displaystyle (U_{\lambda }(\langle a,b,c\rangle )\psi )(x)=e^{2\pi i\lambda (c+bx)}\psi (x+a)}
.
By Stone–von Neumann theorem , this is the unique irreducible representation up to unitary equivalence satisfying the canonical commutation relation
U
λ
(
⟨
a
,
0
,
0
⟩
)
U
λ
(
⟨
0
,
b
,
0
⟩
)
=
e
2
π
i
λ
a
b
U
λ
(
⟨
0
,
b
,
0
⟩
)
U
λ
(
⟨
a
,
0
,
0
⟩
)
{\displaystyle U_{\lambda }(\langle a,0,0\rangle )U_{\lambda }(\langle 0,b,0\rangle )=e^{2\pi i\lambda ab}U_{\lambda }(\langle 0,b,0\rangle )U_{\lambda }(\langle a,0,0\rangle )}
.
The fundamental representation
U
=
U
1
{\displaystyle U=U_{1}}
of
N
{\displaystyle N}
on
L
2
(
R
)
{\displaystyle L^{2}(\mathbb {R} )}
and the right translation
R
{\displaystyle R}
of
N
{\displaystyle N}
on
H
1
⊂
L
2
(
Γ
∖
N
)
{\displaystyle H_{1}\subset L^{2}(\Gamma \backslash N)}
are intertwined by the Weil–Brezin map
W
U
(
⟨
a
,
b
,
c
⟩
)
=
R
(
⟨
a
,
b
,
c
⟩
)
W
{\displaystyle WU(\langle a,b,c\rangle )=R(\langle a,b,c\rangle )W}
.
In other words, the fundamental representation
U
{\displaystyle U}
on
L
2
(
R
)
{\displaystyle L^{2}(\mathbb {R} )}
is unitarily equivalent to the right translation
R
{\displaystyle R}
on
H
1
{\displaystyle H_{1}}
through the Weil-Brezin map.
Let
J
:
N
→
N
{\displaystyle J:N\to N}
be the automorphism on the Heisenberg group given by
J
(
⟨
x
,
y
,
t
⟩
)
=
⟨
y
,
−
x
,
t
−
x
y
⟩
{\displaystyle J(\langle x,y,t\rangle )=\langle y,-x,t-xy\rangle }
.
It naturally induces a unitary operator
J
∗
:
H
1
→
H
1
{\displaystyle J^{*}:H_{1}\to H_{1}}
, then the Fourier transform
F
=
W
−
1
J
∗
W
{\displaystyle {\mathcal {F}}=W^{-1}J^{*}W}
as a unitary operator on
L
2
(
R
)
{\displaystyle L^{2}(\mathbb {R} )}
.
The norm-preserving property of
W
{\displaystyle W}
and
J
∗
{\displaystyle J^{*}}
, which is easily seen, yields the norm-preserving property of the Fourier transform, which is referred to as the Plancherel theorem.
For any Schwartz function
ψ
{\displaystyle \psi }
,
∑
l
ψ
(
l
)
=
W
(
ψ
)
(
Γ
⟨
0
,
0
,
0
)
⟩
)
=
(
J
∗
W
(
ψ
)
)
(
Γ
⟨
0
,
0
,
0
)
⟩
)
=
W
(
ψ
^
)
(
Γ
⟨
0
,
0
,
0
)
⟩
)
=
∑
l
ψ
^
(
l
)
{\displaystyle \sum _{l}\psi (l)=W(\psi )(\Gamma \langle 0,0,0)\rangle )=(J^{*}W(\psi ))(\Gamma \langle 0,0,0)\rangle )=W({\hat {\psi }})(\Gamma \langle 0,0,0)\rangle )=\sum _{l}{\hat {\psi }}(l)}
.
This is just the Poisson summation formula.
For each
n
≠
0
{\displaystyle n\neq 0}
, the subspace
H
n
⊂
L
2
(
Γ
∖
N
)
{\displaystyle H_{n}\subset L^{2}(\Gamma \backslash N)}
can further be decomposed into right-translation-invariant orthogonal subspaces
H
n
=
⊕
m
=
0
|
n
|
−
1
H
n
,
m
{\displaystyle H_{n}=\oplus _{m=0}^{|n|-1}H_{n,m}}
where
H
n
,
m
=
{
f
∈
H
n
∣
f
(
Γ
⟨
x
,
y
+
1
n
,
t
⟩
)
=
e
2
π
i
m
/
n
f
(
Γ
⟨
x
,
y
,
t
⟩
)
}
{\displaystyle H_{n,m}=\{f\in H_{n}\mid f(\Gamma \langle x,y+{1 \over n},t\rangle )=e^{2\pi im/n}f(\Gamma \langle x,y,t\rangle )\}}
.
The left translation
L
(
⟨
0
,
1
/
n
,
0
⟩
)
{\displaystyle L(\langle 0,1/n,0\rangle )}
is well-defined on
H
n
{\displaystyle H_{n}}
, and
H
n
,
0
,
.
.
.
,
H
n
,
|
n
|
−
1
{\displaystyle H_{n,0},...,H_{n,|n|-1}}
are its eigenspaces .
The left translation
L
(
⟨
m
/
n
,
0
,
0
⟩
)
{\displaystyle L(\langle m/n,0,0\rangle )}
is well-defined on
H
n
{\displaystyle H_{n}}
, and the map
L
(
⟨
m
/
n
,
0
,
0
⟩
)
:
H
n
,
0
→
H
n
,
m
{\displaystyle L(\langle m/n,0,0\rangle ):H_{n,0}\to H_{n,m}}
is a unitary transformation.
For each
n
≠
0
{\displaystyle n\neq 0}
, and
m
=
0
,
.
.
.
,
|
n
|
−
1
{\displaystyle m=0,...,|n|-1}
, define the map
W
n
,
m
:
L
2
(
R
)
→
H
n
,
m
{\displaystyle W_{n,m}:L^{2}(\mathbb {R} )\to H_{n,m}}
by
W
n
,
m
(
ψ
)
(
Γ
⟨
x
,
y
,
t
⟩
)
=
∑
l
∈
Z
ψ
(
x
+
l
+
m
n
)
e
2
π
i
(
n
l
+
m
)
y
e
2
π
i
n
t
{\displaystyle W_{n,m}(\psi )(\Gamma \langle x,y,t\rangle )=\sum _{l\in \mathbb {Z} }\psi (x+l+{m \over n})e^{2\pi i(nl+m)y}e^{2\pi int}}
for every Schwartz function
ψ
{\displaystyle \psi }
, where convergence is pointwise.
W
n
,
m
=
L
(
⟨
m
/
n
,
0
,
0
⟩
)
∘
W
n
,
0
.
{\displaystyle W_{n,m}=L(\langle m/n,0,0\rangle )\circ W_{n,0}.}
The inverse map
W
n
,
m
−
1
:
H
n
,
m
→
L
2
(
R
)
{\displaystyle W_{n,m}^{-1}:H_{n,m}\to L^{2}(\mathbb {R} )}
is given by
(
W
n
,
m
−
1
f
)
(
x
)
=
∫
0
1
e
−
2
π
i
m
y
f
(
Γ
⟨
x
−
m
n
,
y
,
0
⟩
)
d
y
{\displaystyle (W_{n,m}^{-1}f)(x)=\int _{0}^{1}e^{-2\pi imy}f(\Gamma \langle x-{m \over n},y,0\rangle )dy}
for every smooth function
f
{\displaystyle f}
on the Heisenberg manifold that is in
H
n
,
m
{\displaystyle H_{n,m}}
.
Similarly, the fundamental unitary representation
U
n
{\displaystyle U_{n}}
of the Heisenberg group is unitarily equivalent to the right translation on
H
n
,
m
{\displaystyle H_{n,m}}
through
W
n
,
m
{\displaystyle W_{n,m}}
:
W
n
,
m
U
n
(
⟨
a
,
b
,
c
⟩
)
=
R
(
⟨
a
,
b
,
c
⟩
)
W
n
,
m
{\displaystyle W_{n,m}U_{n}(\langle a,b,c\rangle )=R(\langle a,b,c\rangle )W_{n,m}}
.
For any
m
,
m
′
{\displaystyle m,m'}
,
(
W
n
,
m
′
−
1
J
∗
W
n
,
m
ψ
)
(
x
)
=
e
2
π
i
m
′
m
/
n
ψ
^
(
n
x
)
{\displaystyle (W_{n,m'}^{-1}J^{*}W_{n,m}\psi )(x)=e^{2\pi im'm/n}{\hat {\psi }}(nx)}
.
For each
n
>
0
{\displaystyle n>0}
, let
ϕ
n
(
x
)
=
(
2
n
)
1
/
4
e
−
π
n
x
2
{\displaystyle \phi _{n}(x)=(2n)^{1/4}e^{-\pi nx^{2}}}
. Consider the finite dimensional subspace
K
n
{\displaystyle K_{n}}
of
H
n
{\displaystyle H_{n}}
generated by
{
e
n
,
0
,
.
.
.
,
e
n
,
n
−
1
}
{\displaystyle \{{\boldsymbol {e}}_{n,0},...,{\boldsymbol {e}}_{n,n-1}\}}
where
e
n
,
m
=
W
n
,
m
(
ϕ
n
)
∈
H
n
,
m
.
{\displaystyle {\boldsymbol {e}}_{n,m}=W_{n,m}(\phi _{n})\in H_{n,m}.}
Then the left translations
L
(
⟨
1
/
n
,
0
,
0
⟩
)
{\displaystyle L(\langle 1/n,0,0\rangle )}
and
L
(
⟨
0
,
1
/
n
,
0
⟩
)
{\displaystyle L(\langle 0,1/n,0\rangle )}
act on
K
n
{\displaystyle K_{n}}
and give rise to the irreducible representation of the finite Heisenberg group. The map
J
∗
{\displaystyle J^{*}}
acts on
K
n
{\displaystyle K_{n}}
and gives rise to the finite Fourier transform
J
∗
e
n
,
m
=
1
n
∑
m
′
e
2
π
i
m
′
m
/
n
e
n
,
m
′
.
{\displaystyle J^{*}{\boldsymbol {e}}_{n,m}={1 \over {\sqrt {n}}}\sum _{m'}e^{2\pi im'm/n}{\boldsymbol {e}}_{n,m'}.}
Nil-theta functions are functions on the Heisenberg manifold that are analogous to the theta functions on the complex plane. The image of Gaussian functions under the Weil–Brezin Map are nil-theta functions. There is a model[ 7] of the finite Fourier transform defined with nil-theta functions, and the nice property of the model is that the finite Fourier transform is compatible with the algebra structure of the space of nil-theta functions.
Definition of nil-theta functions
edit
Let
n
{\displaystyle {\mathfrak {n}}}
be the complexified Lie algebra of the Heisenberg group
N
{\displaystyle N}
. A basis of
n
{\displaystyle {\mathfrak {n}}}
is given by the left-invariant vector fields
X
,
Y
,
T
{\displaystyle X,Y,T}
on
N
{\displaystyle N}
:
X
(
x
,
y
,
t
)
=
∂
∂
x
,
{\displaystyle X(x,y,t)={\partial \over \partial x},}
Y
(
x
,
y
,
t
)
=
∂
∂
y
+
x
∂
∂
t
,
{\displaystyle Y(x,y,t)={\partial \over \partial y}+x{\partial \over \partial t},}
T
(
x
,
y
,
t
)
=
∂
∂
t
.
{\displaystyle T(x,y,t)={\partial \over \partial t}.}
These vector fields are well-defined on the Heisenberg manifold
Γ
∖
N
{\displaystyle \Gamma \backslash N}
.
Introduce the notation
V
−
i
=
X
−
i
Y
{\displaystyle V_{-i}=X-iY}
. For each
n
>
0
{\displaystyle n>0}
, the vector field
V
−
i
{\displaystyle V_{-i}}
on the Heisenberg manifold can be thought of as a differential operator on
C
∞
(
Γ
∖
N
)
∩
H
n
,
m
{\displaystyle C^{\infty }(\Gamma \backslash N)\cap H_{n,m}}
with the kernel generated by
e
n
,
m
{\displaystyle {\boldsymbol {e}}_{n,m}}
.
We call
ker
(
V
−
i
:
C
∞
(
Γ
∖
N
)
∩
H
n
→
H
n
)
=
{
K
n
,
n
>
0
C
,
n
=
0
{\displaystyle \ker(V_{-i}:C^{\infty }(\Gamma \backslash N)\cap H_{n}\to H_{n})=\left\{{\begin{array}{lr}K_{n},&n>0\\\mathbb {C} ,&n=0\end{array}}\right.}
the space of nil-theta functions of degree
n
{\displaystyle n}
.
Algebra structure of nil-theta functions
edit
The nil-theta functions with pointwise multiplication on
Γ
∖
N
{\displaystyle \Gamma \backslash N}
form a graded algebra
⊕
n
≥
0
K
n
{\displaystyle \oplus _{n\geq 0}K_{n}}
(here
K
0
=
C
{\displaystyle K_{0}=\mathbb {C} }
).
Auslander and Tolimieri showed that this graded algebra is isomorphic to
C
[
x
1
,
x
2
2
,
x
3
3
]
/
(
x
3
6
+
x
1
4
x
2
2
+
x
2
6
)
{\displaystyle \mathbb {C} [x_{1},x_{2}^{2},x_{3}^{3}]/(x_{3}^{6}+x_{1}^{4}x_{2}^{2}+x_{2}^{6})}
,
and that the finite Fourier transform (see the preceding section #Relation to the finite Fourier transform ) is an automorphism of the graded algebra.
Relation to Jacobi theta functions
edit
Let
ϑ
(
z
;
τ
)
=
∑
l
=
−
∞
∞
exp
(
π
i
l
2
τ
+
2
π
i
l
z
)
{\displaystyle \vartheta (z;\tau )=\sum _{l=-\infty }^{\infty }\exp(\pi il^{2}\tau +2\pi ilz)}
be the Jacobi theta function . Then
ϑ
(
n
(
x
+
i
y
)
;
n
i
)
=
(
2
n
)
−
1
/
4
e
π
n
y
2
e
n
,
0
(
Γ
⟨
y
,
x
,
0
⟩
)
{\displaystyle \vartheta (n(x+iy);ni)=(2n)^{-1/4}e^{\pi ny^{2}}{\boldsymbol {e}}_{n,0}(\Gamma \langle y,x,0\rangle )}
.
Higher order theta functions with characteristics
edit
An entire function
f
{\displaystyle f}
on
C
{\displaystyle \mathbb {C} }
is called a theta function of order
n
{\displaystyle n}
, period
τ
{\displaystyle \tau }
(
I
m
(
τ
)
>
0
{\displaystyle \mathrm {Im} (\tau )>0}
) and characteristic
[
b
a
]
{\displaystyle [_{b}^{a}]}
if it satisfies the following equations:
f
(
z
+
1
)
=
exp
(
π
i
a
)
f
(
z
)
{\displaystyle f(z+1)=\exp(\pi ia)f(z)}
,
f
(
z
+
τ
)
=
exp
(
π
i
b
)
exp
(
−
π
i
n
(
2
z
+
τ
)
)
f
(
z
)
{\displaystyle f(z+\tau )=\exp(\pi ib)\exp(-\pi in(2z+\tau ))f(z)}
.
The space of theta functions of order
n
{\displaystyle n}
, period
τ
{\displaystyle \tau }
and characteristic
[
b
a
]
{\displaystyle [_{b}^{a}]}
is denoted by
Θ
n
[
b
a
]
(
τ
,
A
)
{\displaystyle \Theta _{n}[_{b}^{a}](\tau ,A)}
.
dim
Θ
n
[
b
a
]
(
τ
,
A
)
=
n
{\displaystyle \dim \Theta _{n}[_{b}^{a}](\tau ,A)=n}
.
A basis of
Θ
n
[
0
0
]
(
i
,
A
)
{\displaystyle \Theta _{n}[_{0}^{0}](i,A)}
is
θ
n
,
m
(
z
)
=
∑
l
∈
Z
exp
[
−
π
n
(
l
+
m
n
)
2
+
2
π
i
(
l
n
+
m
)
z
)
]
{\displaystyle \theta _{n,m}(z)=\sum _{l\in \mathbb {Z} }\exp[-\pi n(l+{m \over n})^{2}+2\pi i(ln+m)z)]}
.
These higher order theta functions are related to the nil-theta functions by
θ
n
,
m
(
x
+
i
y
)
=
(
2
n
)
−
1
/
4
e
π
n
y
2
e
n
,
m
(
Γ
⟨
y
,
x
,
0
⟩
)
{\displaystyle \theta _{n,m}(x+iy)=(2n)^{-1/4}e^{\pi ny^{2}}{\boldsymbol {e}}_{n,m}(\Gamma \langle y,x,0\rangle )}
.
^ Weil, André. "Sur certains groupes d'opérateurs unitaires." Acta mathematica 111.1 (1964): 143-211.
^ Brezin, Jonathan. "Harmonic analysis on nilmanifolds." Transactions of the American Mathematical Society 150.2 (1970): 611-618.
^ Auslander, Louis, and Richard Tolimieri. Abelian harmonic analysis, theta functions and function algebras on a nilmanifold. Springer, 1975.
^ Auslander, Louis. "Lecture notes on nil-theta functions." Conference Board of the Mathematical Sciences, 1977.
^ Zhang, D. "Integer Linear Canonical Transforms, Their Discretization, and Poisson Summation Formulae"
^ "Zak Transform" .
^ Auslander, L., and R. Tolimieri. "Algebraic structures for⨁Σ _ {𝑛≥ 1} 𝐿2 (𝑍/𝑛) compatible with the finite Fourier transform." Transactions of the American Mathematical Society 244 (1978): 263-272.