Part of a series on |
Spacetime |
---|
![]() |
In general relativistic physics, and it's numerous applications to astrophysics, thermodynamics in curved spacetime is the mathematical description of classical thermodynamics in curved spacetime.
Equilibrium thermodynamics
editThermodynamic laws
editEach of the classical thermodynamic laws can be stated in a number of equivalent ways. The fundamental thermodynamic relation combines the first and second laws into one:
The second law can be also be stated as:
From a more fundamental and modern perspective, a more fundamental law of thermodynamics is baryon number conservation. To formulate this; denote the number density of baryons (number of baryons N per unit 3d volume V) by n in the rest frame, then the proper time derivative of total number is zero:
and the changes in volume are given as the four-divergence of the four velocity u of the fluid:
Explicitly rewriting the divergence term leads to a simpler continuity equation:
where the baryon number flux vector is:
The relativistic generalization of eqn (X) is:
where the equality holds for thermal equilibrium only, the inequality is strict for non-equilibrium.
Non-equilibrium thermodynamics
editRelativistic heat conduction
editSee also
editReferences
editNotes
edit- C.W. Misner, K.S. Thorne, J.A. Wheeler. Gravitation. p. 1146. ISBN 0-7167-0344-0.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- R. Yang (2012). "The thermal entropy density of spacetime" (PDF). arXiv:1110.5810v2. doi:10.3390/e15010156.
{{cite news}}
: CS1 maint: unflagged free DOI (link)
- H.E. Camblong (2005). [repository.usfca.edu/cgi/viewcontent.cgi?article=1020&context=phys "Semiclassical Methods in Curved Spacetime andBlack Hole Thermodynamics"].
{{cite news}}
: Check|url=
value (help) [1]
- V. Valeri, P. Frolov, I.D. Novikov (1998). Black hole physics: basic concepts and new developments. Fundamental theories of physics. Vol. 96. Springer. ISBN 0-792-351-452.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
For AM in GR:
- T. Padmanabhan (2010). Gravitation: Foundations and Frontiers. Cambridge University Press. ISBN 1-139-485-393.