Nice Model Reading List
editgrand tack Mojzsis
Primary
edit- Origin of the orbital architecture of the giant planets of the Solar System
- Tsiganis, K.; Gomes, R.; Morbidelli, A.; Levison, H. F. (2005)
- Nature, Volume 435, Issue 7041, pp. 459-461.
- http://www.nature.com/nature/journal/v435/n7041/abs/nature03539.html
- Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets
- Gomes, R.; Levison, H. F.; Tsiganis, K.; Morbidelli, A. (2005)
- Nature, Volume 435, Issue 7041, pp. 466-469.
- http://www.nature.com/nature/journal/v435/n7041/abs/nature03676.html
- Chaotic capture of Jupiter's Trojan asteroids in the early Solar System
- Morbidelli, A.; Levison, H. F.; Tsiganis, K.; Gomes, R. (2005)
- Nature, Volume 435, Issue 7041, pp. 462-465.
- http://www.nature.com/nature/journal/v435/n7041/abs/nature03540.html
- Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture
- Morbidelli, Alessandro; Tsiganis, Kleomenis; Crida, Aurélien; Levison, Harold F.; Gomes, Rodney (2007)
- The Astronomical Journal, Volume 134, Issue 5, pp. 1790-1798.
- http://iopscience.iop.org/1538-3881/134/5/1790/
- http://arxiv.org/pdf/0706.1713.pdf
- Capture of Irregular Satellites during Planetary Encounters
- Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2007)
- The Astronomical Journal, Volume 133, Issue 5, pp. 1962-1976.
- http://iopscience.iop.org/1538-3881/133/5/1962/
- Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune
- Levison, Harold F.; Morbidelli, Alessandro; Van Laerhoven, Christa; Gomes, Rodney; Tsiganis, Kleomenis (2008)
- Icarus, Volume 196, Issue 1, p. 258-273.
- http://www.sciencedirect.com/science/article/pii/S0019103507006094
- http://arxiv.org/pdf/0712.0553v1.pdf
- Contamination of the asteroid belt by primordial trans-Neptunian objects
- Levison, Harold F.; Bottke, William F.; Gounelle, Matthieu; Morbidelli, Alessandro; Nesvorný, David; Tsiganis, Kleomenis (2009)
- Nature, Volume 460, Issue 7253, pp. 364-366.
- http://www.nature.com/nature/journal/v460/n7253/full/nature08094.html
- Chaotic Capture of Neptune Trojans
- Nesvorný, David; Vokrouhlický, David (2009)
- The Astronomical Journal, Volume 137, Issue 6, pp. 5003-5011.
- http://iopscience.iop.org/1538-3881/137/6/5003/
- Constructing the secular architecture of the solar system I. The giant planets
- Morbidelli, A.; Brasser, R.; Tsiganis, K.; Gomes, R.; Levison, H. F. (2009)
- Astronomy and Astrophysics, Volume 507, Issue 2, pp.1041-1052.
- http://www.aanda.org/articles/aa/abs/2009/44/aa12876-09/aa12876-09.html
- http://arxiv.org/pdf/0909.1886v1.pdf
- Constructing the secular architecture of the solar system II. the terrestrial planets
- Brasser, R.; Morbidelli, A.; Gomes, R.; Tsiganis, K.; Levison, H. F. (2009)
- Astronomy and Astrophysics, Volume 507, Issue 2, pp.1053-1065.
- http://www.aanda.org/articles/aa/abs/2009/44/aa12878-09/aa12878-09.html
- http://arxiv.org/pdf/0909.1891.pdf
- Evidence from the Asteroid Belt for a Violent Past Evolution of Jupiter's Orbit
- Morbidelli, Alessandro; Brasser, Ramon; Gomes, Rodney; Levison, Harold F.; Tsiganis, Kleomenis (2010)
- The Astronomical Journal, Volume 140, Issue 5, pp. 1391-1401.
- http://iopscience.iop.org/1538-3881/140/5/1391/
- http://arxiv.org/pdf/1009.1521.pdf
- Early Dynamical Evolution of the Solar System. Pinning Down the Initial Conditions of the Nice Model
- Batygin, Konstantin; Brown, Michael E. (2010)
- The Astrophysical Journal, Volume 716, Issue 2, pp. 1323-1331.
- http://iopscience.iop.org/0004-637X/716/2/1323/
- http://arxiv.org/pdf/1004.5414.pdf
- A coherent and comprehensive model of the evolution of the outer Solar System
- Morbidelli, Alessandro (2010)
- Comptes Rendus Physique, v. 11, iss. 9-10, p. 651-659.
- http://www.sciencedirect.com/science/article/pii/S1631070510001532
- http://arxiv.org/pdf/1010.6221.pdf
- Late Orbital Instabilities in the Outer Planets Induced by Interaction with a Self-gravitating Planetesimal Disk
- Levison, Harold F.; Morbidelli, Alessandro; Tsiganis, Kleomenis; Nesvorný, David; Gomes, Rodney (2011)
- The Astronomical Journal, Volume 142, Issue 5, article id. 152, 11 pp.
- http://iopscience.iop.org/1538-3881/142/5/152
- Young Solar System's Fifth Giant Planet?
- Nesvorný, David (2011)
- The Astrophysical Journal Letters, Volume 742, Issue 2, article id. L22, 6 pp.
- http://iopscience.iop.org/2041-8205/742/2/L22/
- http://arxiv.org/pdf/1109.2949v1.pdf
- Instability-driven Dynamical Evolution Model of a Primordially Five-planet Outer Solar System
- Batygin, Konstantin; Brown, Michael E.; Betts, Hayden (2012)
- The Astrophysical Journal Letters, Volume 744, Issue 1, article id. L3, 5 pp.
- http://iopscience.iop.org/2041-8205/744/1/L3/
- http://arxiv.org/pdf/1111.3682v1.pdf
- Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets
- Nesvorný, David; Morbidelli, Alessandro (2012)
- The Astronomical Journal, Volume 144, Issue 4, article id. 117, 20 pp.
- http://iopscience.iop.org/1538-3881/144/4/117/
- http://arxiv.org/pdf/1208.2957v1.pdf
- An Archaean heavy bombardment from a destabilized extension of the asteroid belt
- Bottke, WilliamF.; Vokrouhlický, David; Minton, David; Nesvorný, David; Morbidelli, Alessandro; Brasser, Ramon; Simonson, Bruce; Levison, :Harold F. (2012)
- Nature, Volume 485, Issue 7396, pp. 78-81.
- http://www.nature.com/nature/journal/v485/n7396/full/nature10967.html
- Capture of Trojans by Jumping Jupiter;
- Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2013)
- The Astrophysical Journal, Volume 768, Issue 1, article id. 45, 8 pp.
- http://iopscience.iop.org/0004-637X/768/1/45/
- http://arxiv.org/pdf/1303.2900v1.pdf
- Capture of Irregular Satellites at Jupiter
- Nesvorny, D.; Vokrouhlicky, D.; Deienno, R. (2014)
- The Astrophysical Journal, Volume 784, Number 1, article id. 22
- http://iopscience.iop.org/0004-637X/784/1/22
- http://arxiv.org/pdf/1401.0253v1.pdf
Planetesimal-driven Migration
edit- Some dynamical aspects of the accretion of Uranus and Neptune
- the exchange of orbital angular momentum with planetesimals
- Fernandez, J. A.; Ip, W.-H. (1984)
- Icarus, vol. 58, April 1984, p. 109-120.
- http://www.sciencedirect.com/science/article/pii/0019103584901015
- Planet Migration in Planetesimal Disks
- Levison, H. F.; Morbidelli, A.; Gomes, R.; Backman, D. (2007)
- Protostars and Planets V, B. Reipurth, D. Jewitt, and K. Keil (eds.), University of Arizona Press, Tucson, 951 pp., 2007., p.669-684 p.669-684
- Planet Migration through a Self-Gravitating Planetesimal Disk
- Moore, Alexander J.; Quillen, Alice C.; Edgar, Richard G. (2008)
- http://arxiv.org/pdf/0809.2855v1.pdf
- Two dynamical classes of Centaurs
- Bailey, Brenae L.; Malhotra, Renu (2009)
- Icarus, Volume 203, Issue 1, p. 155-163.
- http://www.sciencedirect.com/science/article/pii/S0019103509001651
- http://arxiv.org/pdf/0906.4795v1.pdf
- Simulations of planet migration driven by planetesimal scattering
- Kirsh, David R.; Duncan, Martin; Brasser, Ramon; Levison, Harold F. (2009)
- Icarus, Volume 199, Issue 1, p. 197-209.
- http://www.sciencedirect.com/science/article/pii/S0019103508003084
- Migration of Planets Embedded in a Circumstellar Disk
- Bromley, Benjamin C.; Kenyon, Scott J. (2011)
- The Astrophysical Journal, Volume 735, Issue 1, article id. 29, 15 pp.
- http://iopscience.iop.org/0004-637X/735/1/29/
- http://arxiv.org/pdf/1101.4025v2.pdf
- Planetesimal-driven planet migration in the presence of a gas disk
- Capobianco, Christopher C.; Duncan, Martin; Levison, Harold F. (2011)
- Icarus, Volume 211, Issue 1, p. 819-831.
- http://www.sciencedirect.com/science/article/pii/S0019103510003374
- http://arxiv.org/pdf/1009.4525v1.pdf
- Migration Rates of Planets due to Scattering of Planetesimals
- Ormel, C. W.; Ida, S.; Tanaka, H. (2012)
- The Astrophysical Journal, Volume 758, Issue 2, article id. 80, 17 pp.
- http://iopscience.iop.org/0004-637X/758/2/80/
- http://arxiv.org/pdf/1207.7104v1.pdf
Planetary Scattering
edit- Modeling the Diversity of Outer Planetary Systems
- Levison, Harold F.; Lissauer, Jack J.; Duncan, Martin J. (1998)
- The Astronomical Journal, Volume 116, Issue 4, pp. 1998-2014.
- http://iopscience.iop.org/1538-3881/116/4/1998/
- The Formation of Ice Giants in a Packed Oligarchy. Instability and Aftermath
- Ford, Eric B.; Chiang, Eugene I. (2007)
- The Astrophysical Journal, Volume 661, Issue 1, pp. 602-615.
- http://iopscience.iop.org/0004-637X/661/1/602/
- http://arxiv.org/pdf/astro-ph/0701745v2.pdf
- Models of the collisional damping scenario for ice-giant planets and Kuiper belt formation
- Levison, Harold F.; Morbidelli, Alessandro (2007)
- Icarus, Volume 189, Issue 1, p. 196-212.
- http://www.sciencedirect.com/science/article/pii/S0019103507000371
- http://arxiv.org/pdf/astro-ph/0701544v1.pdf
- From Mean Motion Resonances to Scattered Planets. Producing the Solar System, Eccentric Exoplanets, and Late Heavy Bombardments
- Thommes, Edward W.; Bryden, Geoffrey; Wu, Yanqin; Rasio, Frederic A. (2008)
- The Astrophysical Journal, Volume 675, Issue 2, pp. 1538-1548.
- http://iopscience.iop.org/0004-637X/675/2/1538/
- http://arxiv.org/pdf/0706.1235v1.pdf
- Dynamical Evolution of Planetary Systems
- Morbidelli, Alessandro (2013)
- Planets, Stars and Stellar Systems, by Oswalt, Terry D.; French, Linda M.; Kalas, Paul, Springer Science+Business Media Dordrecht, 2013, p. 63
- http://link.springer.com/referenceworkentry/10.1007%2F978-94-007-5606-9_2
- http://arxiv.org/pdf/1106.4114.pdf
- Planetary system disruption by Galactic perturbations to wide binary stars
- Kaib, Nathan A.; Raymond, Sean N.; Duncan, Martin (2013)
- Nature, Volume 493, Issue 7432, pp. 381-384.
- http://www.nature.com/nature/journal/v493/n7432/full/nature11780.html
- http://arxiv.org/pdf/1301.3145v1.pdf
- The Fate of Scattered Planets
- Bromley, Benjamin C.; Kenyon, Scott J.
- The Astrophysical Journal, Volume 796, Issue 2, article id. 141, 9 pp. (2014).
- http://iopscience.iop.org/0004-637X/796/2/141/
- http://arxiv.org/pdf/1410.2816v1.pdf
Jupiter-core-core-Saturn
edit- The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System
- Thommes, Edward W.; Duncan, Martin J.; Levison, Harold F. (1999)
- Nature, Volume 402, Issue 6762, pp. 635-638
- http://www.nature.com/nature/journal/v402/n6762/abs/402635a0.html
- The Formation of Uranus and Neptune among Jupiter and Saturn
- Thommes, E. W.; Duncan, M. J.; Levison, H. F. (2002)
- The Astronomical Journal, Volume 123, Issue 5, pp. 2862-2883.
- http://iopscience.iop.org/1538-3881/123/5/2862/
- http://arxiv.org/pdf/astro-ph/0111290v1.pdf
- A Fairy Tale about the Formation of Uranus and Neptune and the Lunar Late Heavy Bombardment
- Levison, H. F.; Thommes, E.; Duncan, M. J.; Dones, L. (2004)
- ASP Conference Series, Vol. 324, Proceedings of the conference held 11-13 April, 2002 , p.152
- http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?2004ASPC..324..152L&
Initial Conditions
edit- Reversing type II migration resonance trapping of a lighter giant protoplanet
- Masset, F.; Snellgrove, M. (2001)
- Monthly Notices of the Royal Astronomical Society, Volume 320, Issue 4, pp. L55-L59.
- http://mnras.oxfordjournals.org/content/320/4/L55
- http://arxiv.org/pdf/astro-ph/0003421v2.pdf
- The dynamics of Jupiter and Saturn in the gaseous proto-planetary disk
- Morbidelli, Alessandro; Crida, Aurélien (2007)
- Icarus, Volume 191, Issue 1, p. 158-171.
- http://www.sciencedirect.com/science/article/pii/S0019103507001480
- http://arxiv.org/pdf/0704.1210v1.pdf
- Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture
- Morbidelli, Alessandro; Tsiganis, Kleomenis; Crida, Aurélien; Levison, Harold F.; Gomes, Rodney (2007)
- The Astronomical Journal, Volume 134, Issue 5, pp. 1790-1798.
- http://iopscience.iop.org/1538-3881/134/5/1790/
- http://arxiv.org/pdf/0706.1713.pdf
- Constraints on resonant–trapping for two planets embedded in a protoplanetary disc
- Pierens, A.; Nelson, R. P. (2008)
- Astronomy and Astrophysics, Volume 482, Issue 1, pp.333-340.
- http://www.aanda.org/articles/aa/abs/2008/16/aa9062-07/aa9062-07.html
- http://arxiv.org/pdf/0802.2033.pdf
- On the Orbital Evolution of a Giant Planet Pair Embedded in a Gaseous Disk. I. Jupiter-Saturn Configuration
- Zhang, Hui; Zhou, Ji-Lin (2010)
- The Astrophysical Journal, Volume 714, Issue 1, pp. 532-548.
- http://iopscience.iop.org/0004-637X/714/1/532/
- http://arxiv.org/pdf/1002.2201v2.pdf
- Early Dynamical Evolution of the Solar System. Pinning Down the Initial Conditions of the Nice Model
- Batygin, Konstantin; Brown, Michael E. (2010)
- The Astrophysical Journal, Volume 716, Issue 2, pp. 1323-1331.
- http://iopscience.iop.org/0004-637X/716/2/1323/
- http://arxiv.org/pdf/1004.5414.pdf
- Outward Migration of Jupiter and Saturn in Evolved Gaseous Disks
- D'Angelo, Gennaro; Marzari, Francesco (2012)
- The Astrophysical Journal, Volume 757, Issue 1, article id. 50, 23 pp.
- http://iopscience.iop.org/0004-637X/757/1/50/
- http://arxiv.org/pdf/1207.2737v2.pdf
- Mass Growth and Evolution of Giant Planets on Resonant Orbits
- Marzari, Francesco; D'Angelo, G. (2013)
- American Astronomical Society, DPS meeting #45, #113.04
- http://adsabs.harvard.edu/abs/2013DPS....4511304M
- Planet-Disk Interactions and Early Evolution of Planetary Systems
- Baruteau, C.; Crida, A.; Paardekooper, S.-J.; Masset, F.; Guilet, J.; Bitsch, B.; Nelson, R.; Kley, W.; Papaloizou, J. (2013)
- Protostars and Planets VI, Henrik Beuther, Ralf S. Klessen, Cornelis P. Dullemond, and Thomas Henning (eds.), University of Arizona Press, Tucson, 914 pp., p.667-689
- https://www.youtube.com/watch?v=_HMw4Lh7IOo
- https://arxiv.org/pdf/1312.4293.pdf
- Stability of the Outer Planets in Multiresonant Configurations with a Self-gravitating Planetesimal Disk
- Reyes-Ruiz, Mauricio; Aceves, Hector; Chavez, Carlos E. (2015)
- The Astrophysical Journal, Volume 804, Issue 2, article id. 91, 13 pp.
- http://iopscience.iop.org/article/10.1088/0004-637X/804/2/91
- http://arxiv.org/pdf/1406.2341v1.pdf
- The structure of protoplanetary discs around evolving young stars
- Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro (2015)
- Astronomy & Astrophysics, Volume 575, id.A28, 17 pp.
- https://www.aanda.org/articles/aa/abs/2015/03/aa24964-14/aa24964-14.html
- https://arxiv.org/pdf/1411.3255.pdf
- Migration of Two Massive Planets into (and out of) First Order Mean Motion Resonances
- Deck, Katherine M.; Batygin, Konstantin (2015)
- The Astrophysical Journal, Volume 810, Issue 2, article id. 119, 20 pp.
- http://iopscience.iop.org/article/10.1088/0004-637X/810/2/119
- http://arxiv.org/pdf/1506.01382v1.pdf
- Outwards migration for planets in stellar irradiated 3D discs
- Lega, E.; Morbidelli, A.; Bitsch, B.; Crida, A.; Szulágyi, J. (2015)
- Monthly Notices of the Royal Astronomical Society, Volume 452, Issue 2, p.1717-1726
- https://academic.oup.com/mnras/article-abstract/452/2/1717/1064683/
- https://arxiv.org/pdf/1506.07348.pdf
- The growth of planets by pebble accretion in evolving protoplanetary discs
- Bitsch, Bertram; Lambrechts, Michiel; Johansen, Anders (2015)
- Astronomy & Astrophysics, Volume 582, id.A112, 24 pp.
- https://www.aanda.org/articles/aa/abs/2015/10/aa26463-15/aa26463-15.html
- https://arxiv.org/pdf/1507.05209.pdf
- Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn
- Izidoro, Andre; Morbidelli, Alessandro; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud (2015)
- Astronomy & Astrophysics, Volume 582, id.A99, 16 pp.
- http://www.aanda.org/articles/aa/abs/2015/10/aa25525-14/aa25525-14.html
- http://arxiv.org/pdf/1506.03029v1.pdf
- Fossilized condensation lines in the Solar System protoplanetary disk
- Morbidelli, A.; Bitsch, B.; Crida, A.; Gounelle, M.; Guillot, T.; Jacobson, S.; Johansen, A.; Lambrechts, M.; Lega, E. (2016)
- Icarus, Volume 267, p. 368-376.
- http://www.sciencedirect.com/science/article/pii/S0019103515005448
- https://arxiv.org/pdf/1511.06556.pdf
- Influence of the water content in protoplanetary discs on planet migration and formation
- Bitsch, Bertram; Johansen, Anders (2016)
- Astronomy & Astrophysics, Volume 590, id.A101, 15 pp.
- https://www.aanda.org/articles/aa/abs/2016/06/aa27676-15/aa27676-15.html
- https://arxiv.org/pdf/1603.01125.pdf
- Trapping planets in an evolving protoplanetary disk, preferred time, locations, and planet mass
- Baillié, K.; Charnoz, S.; Pantin, E. (2016)
- Astronomy & Astrophysics, Volume 590, id.A60, 12 pp.
- https://www.aanda.org/articles/aa/abs/2016/06/aa28027-15/aa28027-15.html
- https://arxiv.org/pdf/1603.07674.pdf
- Challenges in planet formation
- Morbidelli, Alessandro; Raymond, Sean N. (2016)
- Journal of Geophysical Research: Planets, Volume 121, Issue 10, pp. 1962-1980
- http://onlinelibrary.wiley.com/doi/10.1002/2016JE005088/abstract
- https://arxiv.org/pdf/1610.07202.pdf
- Evolution of protoplanetary discs with magnetically driven disc winds
- Suzuki, Takeru K.; Ogihara, Masahiro; Morbidelli, Alessandro; Crida, Aurélien; Guillot, Tristan (2016)
- Astronomy & Astrophysics, Volume 596, id.A74, 15 pp.
- https://www.aanda.org/articles/aa/abs/2016/12/aa28955-16/aa28955-16.html
- https://arxiv.org/pdf/1609.00437.pdf
- Constraining the Giant Planets’ Initial Configuration from Their Evolution. Implications for the Timing of the Planetary Instability
- Deienno, Rogerio; Morbidelli, Alessandro; Gomes, Rodney S.; Nesvorný, David (2017)
- The Astronomical Journal, Volume 153, Issue 4, article id. 153, 13 pp.
- http://iopscience.iop.org/article/10.3847/1538-3881/aa5eaa/meta
- https://arxiv.org/pdf/1702.02094.pdf
- Dynamics of the Giant Planets due to a Fully Self-gravitating Planetesimal Disk
- Quarles, Billy L.; Kaib, Nathan A. (2017)
- American Astronomical Society, AAS Meeting #229, id.112.02
- Runaway gas accretion and gap opening versus type I migration
- Crida, A.; Bitsch, B. (2017)
- Icarus, Volume 285, p. 145-154.
- http://www.sciencedirect.com/science/article/pii/S0019103516306686
- https://arxiv.org/pdf/1610.05403.pdf
Grand Tack
edit- Formation of the Terrestrial Planets from a Narrow Annulus
- Hansen, Brad M. S. (2009)
- The Astrophysical Journal, Volume 703, Issue 1, pp. 1131-1140.
- http://iopscience.iop.org/0004-637X/703/1/1131/
- http://arxiv.org/pdf/0908.0743v1.pdf
- A low mass for Mars from Jupiter's early gas-driven migration
- Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M. (2011)
- Nature, Volume 475, Issue 7355, pp. 206-209.
- http://www.nature.com/nature/journal/v475/n7355/full/nature10201.html
- http://arxiv.org/pdf/1201.5177v1.pdf
- Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula
- Pierens, A.; Raymond, S. N. (2011)
- Astronomy & Astrophysics, Volume 533, id.A131, 14 pp.
- http://www.aanda.org/articles/aa/abs/2011/09/aa17451-11/aa17451-11.html
- http://arxiv.org/pdf/1107.5656v1.pdf
- Populating the asteroid belt from two parent source regions due to the migration of giant planets—"The Grand Tack"
- Walsh, Kevin J.; Morbidelli, A.; Raymond, S. N.; O'Brien, D. P.; Mandell, A. M. (2012)
- Meteoritics & Planetary Science, Volume 47, Issue 12, pp. 1941-1947.
- http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2012.01418.x/abstract
- Lunar and terrestrial planet formation in the Grand Tack scenario
- Jacobson, S. A.; Morbidelli, A.
- Phil. Trans. R. Soc. A, Vol. 372, id. 0174
- http://rsta.royalsocietypublishing.org/content/372/2024/20130174
- http://arxiv.org/pdf/1406.2697v1.pdf
- The Grand Tack model a critical review
- Raymond, Sean N.; Morbidelli, Alessandro
- eprint arXiv:1409.6340
- http://arxiv.org/pdf/1409.6340v1.pdf
- Outward migration of Jupiter and Saturn in 3/2 or 2/1 resonance in radiative disks, implications for the Grand Tack and Nice models
- Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David; Morbidelli, Alessandro (2014)
- The Astrophysical Journal Letters, Volume 795, Issue 1, article id. L11, 6 pp.
- http://iopscience.iop.org/2041-8205/795/1/L11/
- http://arxiv.org/pdf/1410.0543v1.pdf
- Jupiter's Decisive Role in the Inner Solar System's Early Evolution
- Batygin, Konstantin; Laughlin, Greg (2015)
- Proceedings of the National Academy of Sciences, vol. 112, issue 14, pp. 4214-4217
- http://www.pnas.org/content/112/14/4214
- http://arxiv.org/pdf/1503.06945v1.pdf
- Earth and Terrestrial Planet Formation
- Jacobson, Seth A.; Walsh, Kevin J.
- The Early Earth: Accretion and Differentiation
- http://onlinelibrary.wiley.com/doi/10.1002/9781118860359.ch3/summary
- https://arxiv.org/pdf/1502.03852.pdf
- Analysis of Terrestrial Planet Formation by the Grand Tack Model. System Architecture and Tack Location
- Brasser, R.; Matsumura, S.; Ida, S.; Mojzsis, S. J.; Werner, S. C. (2016)
- The Astrophysical Journal, Volume 821, Issue 2, article id. 75, 18 pp.
- http://iopscience.iop.org/article/10.3847/0004-637X/821/2/75
- https://arxiv.org/pdf/1603.01009http://iopscience.iop.org/article/10.3847/0004-637X/821/2/75
- Terrestrial Planet Formation from an Annulus
- Walsh, Kevin J.; Levison, Harold F. (2016)
- The Astronomical Journal, Volume 152, Issue 3, article id. 68, 11 pp.
- http://iopscience.iop.org/article/10.3847/0004-6256/152/3/68/meta
- https://arxiv.org/pdf/1609.06639.pdf
- The cool and distant formation of Mars
- Brasser, R.; Mojzsis, S. J.; Matsumura, S.; Ida, S. (2017)
- Earth and Planetary Science Letters, Volume 468, p. 85-93.
- http://www.sciencedirect.com/science/article/pii/S0012821X1730184X
- https://arxiv.org/pdf/1704.00184
- Timing of the formation and migration of giant planets as constrained by CB chondrites
- Johnson, B. C.; Walsh, K. J.; Minton, D. A.; Krot, A. N.; Levison, H. F.
- Science Advances, vol. 2, issue 12, pp. e1601658-e1601658
- http://advances.sciencemag.org/content/2/12/e1601658
- The Trouble with Building Planets Too Quickly
- Rapid Accretion in Grand Tack Simulations Requires Extremely Efficient Mantle Equilibration of Hf-W
- Zube, N. G.; Nimmo, F.; Jacobson, S. A.; Fischer, R.
- 48th Lunar and Planetary Science Conference
- https://www.hou.usra.edu/meetings/lpsc2017/pdf/1750.pdf
Alternates
edit- Terrestrial Planet Formation in a Protoplanetary Disk with a Local Mass Depletion
- A Successful Scenario for the Formation :Izidoro, A.; Haghighipour, N.; Winter, O. C.; Tsuchida, M. (2014)
- The Astrophysical Journal, Volume 782, Issue 1, article id. 31, 20 pp.
- http://iopscience.iop.org/article/10.1088/0004-637X/782/1/31/meta
- https://arxiv.org/pdf/1312.3959
- Gas Giant Planets as Dynamical Barriers to Inward-Migrating Super-Earths
- Izidoro, André; Raymond, Sean N.; Morbidelli, Alessandro; Hersant, Franck; Pierens, Arnaud (2015)
- The Astrophysical Journal Letters, Volume 800, Issue 2, article id. L22, 5 pp.
- http://iopscience.iop.org/article/10.1088/2041-8205/800/2/L22/meta
- https://arxiv.org/pdf/1501.06308
- Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn
- Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud (2015)
- Astronomy & Astrophysics, Volume 582, id.A99, 16 pp.
- https://www.aanda.org/articles/aa/abs/2015/10/aa25525-14/aa25525-14.html
- https://arxiv.org/pdf/1506.03029
- Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects
- Levison, Harold F.; Kretke, Katherine A.; Walsh, Kevin; Bottke, William (2015)
- Proceedings of the National Academy of Sciences, vol. 112 no. 4, p. 14180-14185
- http://www.pnas.org/content/112/46/14180
- http://arxiv.org/pdf/1510.02095v1
- Terrestrial planet formation constrained by Mars and the structure of the asteroid belt
- Izidoro, André; Raymond, Sean N.; Morbidelli, Alessandro; Winter, Othon C. (2016)
- Monthly Notices of the Royal Astronomical Society, Volume 453, Issue 4, p.3619-3634
- https://academic.oup.com/mnras/article-abstract/453/4/3619/2593672/
- https://arxiv.org/pdf/1508.01365
- Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?
- Raymond, Sean N.; Izidoro, Andre; Bitsch, Bertram; Jacobson, Seth A. (2016)
- Monthly Notices of the Royal Astronomical Society, Volume 458, Issue 3, p.2962-2972
- https://academic.oup.com/mnras/article-abstract/458/3/2962/2589174/
- https://arxiv.org/pdf/1602.06573
- On the water delivery to terrestrial embryos by ice pebble accretion
- Sato, Takao; Okuzumi, Satoshi; Ida, Shigeru
- Astronomy & Astrophysics, Volume 589, id.A15, 19 pp.
- https://www.aanda.org/articles/aa/abs/2016/05/aa27069-15/aa27069-15.html
- https://arxiv.org/pdf/1512.02414.pdf
- The Asteroid Belt as a Relic from a Chaotic Early Solar System
- Izidoro, André; Raymond, Sean N.; Pierens, Arnaud; Morbidelli, Alessandro; Winter, Othon C.; Nesvorny`, David (2016)
- The Astrophysical Journal, Volume 833, Issue 1, article id. 40, 18 pp.
- http://iopscience.iop.org/article/10.3847/1538-4357/833/1/40/meta
- https://arxiv.org/pdf/1609.04970
- Planetesimal Clearing and Size-dependent Asteroid Retention by Secular Resonance Sweeping during the Depletion of the Solar Nebula
- Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N.
- The Astrophysical Journal, Volume 836, Issue 2, article id. 207, 21 pp.
- http://iopscience.iop.org/article/10.3847/1538-4357/836/2/207/meta
- https://arxiv.org/pdf/1610.09670
- Terrestrial Planet Formation. Dynamical Shake-up and the Low Mass of Mars
- Bromley, Benjamin C.; Kenyon, Scott J. (2017)
- The Astronomical Journal, Volume 153, Issue 5, article id. 216, 17 pp.
- http://iopscience.iop.org/article/10.3847/1538-3881/aa6aaa/meta
- https://arxiv.org/pdf/1703.10618
- An Early Instabilities Effect on Terrestrial Planetary Formation
- Clement, Matthew; Kaib, Nathan A.
- American Astronomical Society, DDA meeting #48, id.102.01
- Origin of water in the inner Solar System. Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion
- Raymond, Sean N.; Izidoro, Andre (2017)
- Icarus, Volume 297, p. 134-148.
- http://www.sciencedirect.com/science/article/pii/S0019103517302592
- https://arxiv.org/pdf/1707.01234
- The Empty Primordial Asteroid Belt
- Raymond, Sean N.; Izidoro, Andre
- arXiv:1709.04242
- https://arxiv.org/pdf/1709.04242
Jumping Jupiter
edit- Constructing the secular architecture of the solar system I. The giant planets
- Morbidelli, A.; Brasser, R.; Tsiganis, K.; Gomes, R.; Levison, H. F. (2009)
- Astronomy and Astrophysics, Volume 507, Issue 2, pp.1041-1052.
- http://www.aanda.org/articles/aa/abs/2009/44/aa12876-09/aa12876-09.html
- http://arxiv.org/pdf/0909.1886v1.pdf
- Constructing the secular architecture of the solar system II. the terrestrial planets
- Brasser, R.; Morbidelli, A.; Gomes, R.; Tsiganis, K.; Levison, H. F. (2009)
- Astronomy and Astrophysics, Volume 507, Issue 2, pp.1053-1065.
- http://www.aanda.org/articles/aa/abs/2009/44/aa12878-09/aa12878-09.html
- http://arxiv.org/pdf/0909.1891.pdf
- Evidence from the Asteroid Belt for a Violent Past Evolution of Jupiter's Orbit
- Morbidelli, Alessandro; Brasser, Ramon; Gomes, Rodney; Levison, Harold F.; Tsiganis, Kleomenis (2010)
- The Astronomical Journal, Volume 140, Issue 5, pp. 1391-1401.
- http://iopscience.iop.org/1538-3881/140/5/1391/
- http://arxiv.org/pdf/1009.1521.pdf
- On the Migration of Jupiter and Saturn. Constraints from Linear Models of Secular Resonant Coupling with the Terrestrial Planets
- Agnor, Craig B.; Lin, D. N. C. (2012)
- The Astrophysical Journal, Volume 745, Issue 2, article id. 143, 20 pp.
- http://iopscience.iop.org/0004-637X/745/2/143/
- http://arxiv.org/pdf/1110.5042v2.pdf
Additional Planets
edit- Young Solar System's Fifth Giant Planet?
- Nesvorný, David (2011)
- The Astrophysical Journal Letters, Volume 742, Issue 2, article id. L22, 6 pp.
- http://iopscience.iop.org/2041-8205/742/2/L22/
- http://arxiv.org/pdf/1109.2949v1.pdf
- Instability-driven Dynamical Evolution Model of a Primordially Five-planet Outer Solar System
- Batygin, Konstantin; Brown, Michael E.; Betts, Hayden (2012)
- The Astrophysical Journal Letters, Volume 744, Issue 1, article id. L3, 5 pp.
- http://iopscience.iop.org/2041-8205/744/1/L3/
- http://arxiv.org/pdf/1111.3682v1.pdf
- Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets
- Nesvorný, David; Morbidelli, Alessandro (2012)
- The Astronomical Journal, Volume 144, Issue 4, article id. 117, 20 pp.
- http://iopscience.iop.org/1538-3881/144/4/117/
- http://arxiv.org/pdf/1208.2957v1.pdf
Late Heavy Bombardment
editOverview
edit- What are the Real Constraints on Commencement of the Late Heavy Bombardment?
- Chapman, C. R.; Cohen, B. A.; Grinspoon, D. H. (2002)
- 33rd Annual Lunar and Planetary Science Conference, March 11-15, 2002, Houston, Texas, abstract no.1627
- http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1627.pdf
- Geochemical and Geochronological Constraints on Early Lunar Bombardment History
- Cohen, B. A. (2002)
- 33rd Annual Lunar and Planetary Science Conference, March 11-15, 2002, Houston, Texas, abstract no.1984
- http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1984.pdf
- Review of the population of impactors and the impact cratering rate in the inner solar system
- Michel, Patrick; Morbidelli, Alessandro (2007)
- Meteoritics & Planetary Science, vol. 42, Issue 11, p.1861-1869
- http://articles.adsabs.harvard.edu/full/2007M%26PS...42.1861M
- What are the real constraints on the existence and magnitude of the late heavy bombardment?
- Chapman, Clark R.; Cohen, Barbara A.; Grinspoon, David H. (2007)
- Icarus, Volume 189, Issue 1, p. 233-245.
- http://www.sciencedirect.com/science/article/pii/S0019103507000255
- Chronology of Impact Bombardment in the Early Solar System. An Overview
- Bogard, D. D. (2008)
- Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas. LPI Contribution No. 1439., p.17-18
- http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3003.pdf
- The Lunar Cataclysm Hypothesis. Status and Prospects
- Norman, M. D. (2008)
- 39th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXIX), held March 10-14, 2008 in League City, Texas. LPI Contribution No. 1391., p.1126
- http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1126.pdf
- Impact bombardment of the terrestrial planets and the early history of the Solar System
- Fassett, Caleb I.; Minton, David A. (2013)
- Nature Geoscience, Volume 6, Issue 7, pp. 520-524.
- http://www.nature.com/ngeo/journal/v6/n7/full/ngeo1841.html
- The Late Heavy Bombardment
- Bottke, William F.; Norman, Marc D. (2017)
- Annual Review of Earth and Planetary Sciences, vol. 45, issue 1, pp. 619-647
- http://www.annualreviews.org/doi/10.1146/annurev-earth-063016-020131
Supportive
edit- The Lunar Time Scale and A Summary of Isotopic Evidence For A Terminal Lunar Cataclysm
- Tera, F.; Papanastassiou, D. A.; Wasserburg, G. J. (1974)
- Abstracts of the Lunar and Planetary Science Conference, volume 5, page 792.
- http://articles.adsabs.harvard.edu/full/1974LPI.....5..792T
- Late heavy bombardment of the moon and terrestrial planets
- Wetherill, G. W. (1975)
- Lunar Science Conference, 6th, Houston, Tex., March 17-21, 1975, Proceedings. Volume 2. (A78-46668 21-91) New York, Pergamon Press, Inc., 1975, p. 1539-1561. , G. W.
- http://articles.adsabs.harvard.edu/full/1975LPSC....6.1539W
- Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages
- Cohen, B. A.; Swindle, T. D.; Kring, D. A. (2000)
- Science, Volume 290, Issue 5497, pp. 1754-1756.
- http://www.sciencemag.org/content/290/5497/1754
- Lifting the Veil. A Pre-Cataclysm Lunar Impact Melt
- Norman, M.; Taylor, L.; Shih, C.; Reese, Y.; Nyquist, L.; Bowen-Thomas, J. (2005)
- Meteoritics & Planetary Science, Vol. 40, Supplement, Proceedings of 68th Annual Meeting of the Meteoritical Society, held September 12-16, 2005 in Gatlinburg, Tennessee., p.5147
- http://www.lpi.usra.edu/meetings/metsoc2005/pdf/5147.pdf
- Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites. Implications for lunar bombardment history
- Cohen, B. A.; Swindle, T. D.; Kring, D. A. (2005)
- Meteoritics & Planetary Science, Vol. 40, p.755
- http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2005.tb00978.x/abstract
- http://articles.adsabs.harvard.edu/full/2005M%26PS...40..755C
- Understanding the Impact Flux on the Moon over the Last 4.6 Gy
- Bottke, W. F.; Levison, H.; Morbidelli, A. (2008)
- Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas. LPI Contribution No. 1439., p.19-20
- http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3005.pdf
- The onset of the lunar cataclysm as recorded in its ancient crater populations
- Marchi, Simone; Bottke, William F.; Kring, David A.; Morbidelli, Alessandro (2012)
- Earth and Planetary Science Letters, Volume 325, p. 27-38.
- http://www.sciencedirect.com/science/article/pii/S0012821X12000374
Skeptical
edit- The case for an Imbrium origin of the Apollo Th-rich impact-melt breccias
- Haskin, Larry A.; Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L. (1998)
- Meteoritics & Planetary Science, vol. 33, no. 5, pp. 959-975.
- http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1998.tb01703.x/abstract
- http://articles.adsabs.harvard.edu/full/1998M%26PS...33..959H
- Megaregolith evolution and cratering cataclysm models--Lunar cataclysm as a misconception (28 years later)
- Hartmann, W. K. (2003)
- Meteoritics &Planetary Science, vol. 38, no. 4, p.579-593
- http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2003.tb00028.x/abstract
- http://articles.adsabs.harvard.edu/full/2003M%26PS...38..579H
- Lunar Prospector Data Imply an Age of 4.1 Ga for the Nectaris Basin, and Other Problems with the Lunar 'Cataclysm' Hypothesis
- Warren, P. H. (2003)
- Third International Conference on Large Meteorite Impacts, to be held August 5-7, 2003, Nördlingen, Germany, abstract no.4129
- http://www.lpi.usra.edu/meetings/largeimpacts2003/pdf/4129.pdf
- The lunar cataclysm. Reality or "Mythconception"?
- Norman, Marc D. (2009)
- Elements, Vol. 5, Issue 1, pp. 23-28.
- http://elements.geoscienceworld.org/content/5/1/23.abstract
- The Problem of The Proposed Late Cratering Cataclysm
- Hartmann, William K. (2009)
- American Astronomical Society, DPS meeting #41, #58.08
- http://adsabs.harvard.edu/abs/2009DPS....41.5808H
- The Sculptured Hills of the Taurus Highlands. Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon
- Spudis, Paul D.; Wilhelms, Don E.; Robinson, Mark S. (2011)
- Journal of Geophysical Research, Volume 116, CiteID E00H03
- http://onlinelibrary.wiley.com/doi/10.1029/2011JE003903/abstract
- On the History of Early Meteoritic Bombardment of the Moon. Did the Lunar Terminal Cataclysm Occur?
- Neukum, G.; Basilevsky, A. T.; Kneissl, T.; Michael, G. G.; Ivanov, B. A. (2012)
- Workshop on the Early Solar System Bombardment II, held 1-3 February 2012, in Houston, Texas. LPI Contribution No. 1649, p.55-56
- http://www.lpi.usra.edu/meetings/bombardment2012/pdf/4022.pdf
- Heavy Bombardment of the Moon at ~4.2 Ga. Evidence from Ages of Lunar Melt Breccias and Zircons
- Norman, M. D.; Nemchin, A. A. (2012)
- 43rd Lunar and Planetary Science Conference, held March 19-23, 2012 at The Woodlands, Texas. LPI Contribution No. 1659, id.1368
- http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1368.pdf
- What is the Age of the Nectaris Basin? New Re-Os Constraints for a Pre-4.0 Ga Bombardment History of the Moon
- Fischer-Gödde, M.; Becker, H. (2011)
- 42nd Lunar and Planetary Science Conference, held March 7-11, 2011 at The Woodlands, Texas. LPI Contribution No. 1608, p.1414
- http://www.lpi.usra.edu/meetings/lpsc2011/pdf/1414.pdf
- Lunar impact basins. Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data
- Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T. (2012)
- Journal of Geophysical Research, Volume 117, CiteID E00H06
- http://onlinelibrary.wiley.com/doi/10.1029/2011JE003951/abstract
- Reviewing "Terminal Cataclysm". What Does it Mean?
- Hartmann, W. K. (2015)
- Workshop on Early Solar System Impact Bombardment III, LPI Contribution No. 1826, p.3003
- http://www.hou.usra.edu/meetings/bombardment2015/pdf/3003.pdf
- Terminal Cataclysm Epistemology. A Cataclysm that Never Happened?
- Hartmann, W. K.(2015)
- 78th Annual Meeting of the Meteoritical Society, LPI Contribution No. 1856, p.5026
- http://www.hou.usra.edu/meetings/metsoc2015/pdf/5026.pdf
Inner solar System
edit- Cataclysmic bombardment throughout the inner solar system 3.9-4.0 Ga
- Kring, David A.; Cohen, Barbara A. (2002)
- Journal of Geophysical Research (Planets), Volume 107, Issue E2, pp. 4-1
- http://onlinelibrary.wiley.com/doi/10.1029/2001JE001529/abstract
- Late Heavy Bombardment. Evidence From Cratering Histories of the Moon, Planets, Satellites, and Asteroids
- Chapman, Clark R. (2007)
- American Astronomical Society, DPS meeting #39, #46.01; Bulletin of the American Astronomical Society, Vol. 39, p.504
- http://adsabs.harvard.edu/abs/2007DPS....39.4601C
- Chronological Evidence for the Late Heavy Bombardment in Ordinary Chondrite Meteorites
- Swindle, T. D.; Kring, D. A. (2008)
- Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas. LPI Contribution No. 1439., p.59-60
- http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3004.pdf
- Ages of very large impact basins on Mars. Implications for the late heavy bombardment in the inner solar system
- Frey, Herbert (2008)
- Geophysical Research Letters, Volume 35, Issue 13, CiteID L13203
- http://onlinelibrary.wiley.com/doi/10.1029/2008GL033515/abstract;jsessionid=8CA2BB67DF47DBD41F98B3F882B2DFC3.d03t02?
- LHB Evidence on Asteroids
- Bogard, D. D. (2012)
- Workshop on the Early Solar System Bombardment II, held 1-3 February 2012, in Houston, Texas. LPI Contribution No. 1649, p.4-5
- http://www.lpi.usra.edu/meetings/bombardment2012/pdf/4001.pdf
- Impact History of Large Bolides at Mars. Implications for the Late-Heavy Bombardment and Isochron Uncertainties
- Robbins, S. J.; Hynek, B. M. (2012)
- 43rd Lunar and Planetary Science Conference, held March 19-23, 2012 at The Woodlands, Texas. LPI Contribution No. 1659, id.1649
- http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1649.pdf
- The Vestan cataclysm. Impact-melt clasts in howardites and the bombardment history of 4 Vesta
- Cohen, Barbara A. (2012)
- Meteoritics & Planetary Science, Volume 48, Issue 5, pp. 771-785.
- http://onlinelibrary.wiley.com/doi/10.1111/maps.12101/abstract;jsessionid=1EB1A62256EF01B77A75A79E1FC6BA33.d04t04?
- http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1265.pdf
- High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites
- Marchi, S.; Bottke, W. F.; Cohen, B. A.; Wünnemann, K .D.; Kring, A.; McSween, H. Y.; De Sanctis, M. C.; O’Brien, D. P.; Schenk, P.; Raymond, C. A.; Russell, C. T. (2013)
- Nature Geoscience, Volume 6, Issue 4, pp. 303-307.
- http://www.nature.com/ngeo/journal/v6/n4/abs/ngeo1769.html
- Global resurfacing of Mercury 4.0-4.1 billion years ago by heavy bombardment and volcanism
- Marchi, Simone; Chapman, Clark R.; Fassett, Caleb I.; Head, James W.; Bottke, W. F.; Strom, Robert G. (2013)
- Nature, Volume 499, Issue 7456, pp. 59-61.
- http://www.nature.com/nature/journal/v499/n7456/full/nature12280.html
- The inner solar system cratering record and the evolution of impactor populations
- Strom, Robert G.; Malhotra, Renu; Xiao, Zhiyong; Ito, Takashi; Yoshida, Fumi; Ostrach, Lillian R. (2015)
- Research in Astronomy and Astrophysics, Volume 15, Issue 3, article id. 407
- http://iopscience.iop.org/article/10.1088/1674-4527/15/3/009
- http://arxiv.org/pdf/1407.4521v1.pdf
- Dating the Moon-forming impact event with asteroidal meteorites
- Bottke, W. F.; Vokrouhlický, D.; Marchi, S.; Swindle, T.; Scott, E. R. D.; Weirich, J. R.; Levison, H. (2015)
- Science, Volume 348, Issue 6232, pp. 321-323
- http://science.sciencemag.org/content/348/6232/321
Impactors
edit- The Origin of Planetary Impactors in the Inner Solar System
- Strom, Robert G.; Malhotra, Renu; Ito, Takashi; Yoshida, Fumi; Kring, David A. (2005)
- Science, Volume 309, Issue 5742, pp. 1847-1850.
- http://www.sciencemag.org/content/309/5742/1847
- http://arxiv.org/pdf/astro-ph/0510200v1.pdf
- Can Impactors from the Main Asteroid Belt Erase a Cometary Cratering Record on the Moon?
- Minton, D. A.; Strom, R. G.; Malhotra, R. (2008)
- Workshop on the Early Solar System Impact Bombardment, LPI Contribution No. 1439., p.43-44
- http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3022.pdf
- The Late Heavy Bombardment and deficiency of impact vapour condensate on the Moon
- Svetsov, V. (2011)
- EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France. p.857
- http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-857.pdf
- Understanding The Apparent Lack Of Cometary Impactors During The Late Heavy Bombardment On The Moon
- Minton, David A.; Richardson, J. (2012)
- American Astronomical Society, DPS meeting #44, #401.04
- http://adsabs.harvard.edu/abs/2012DPS....4440104M
- The Earth-Moon system during the late heavy bombardment period - Geochemical support for impacts dominated by comets
- Gråe Jørgensen, Uffe; Appel, Peter W. U.; Hatsukawa, Yuichi; Frei, Robert; Oshima, Masumi; Toh, Yosuke; Kimura, Atsushi (2009)
- Icarus, Volume 204, Issue 2, p. 368-380.
- http://www.sciencedirect.com/science/article/pii/S0019103509002905
- http://arxiv.org/pdf/0907.4104v1.pdf
- Direct Detection of Projectile Relics from the End of the Lunar Basin-Forming Epoch
- Joy, Katherine H.; Zolensky, Michael E.; Nagashima, Kazuhide; Huss, Gary R.; Ross, D. Kent; McKay, David S.; Kring, David A. (2012)
- Science, Volume 336, Issue 6087, pp. 1426-
- http://science.sciencemag.org/content/336/6087/1426.full
- Re-examining the main asteroid belt as the primary source of ancient lunar craters
- Minton, David A.; Richardson, James E.; Fassett, Caleb I. (2014)
- Icarus, Volume 247, p. 172-190
- http://www.sciencedirect.com/science/article/pii/S0019103514005570
- http://arxiv.org/pdf/1408.5304v1.pdf
- On Asteroid Impacts, Crater Scaling Laws, and a Proposed Younger Surface Age for Venus
- Bottke, W. F.; Vokrouhlicky, D.; Ghent, B.; Mazrouei, S.; Robbins, S.; Marchi, S. (2016)
- 47th Lunar and Planetary Science Conference
- https://www.hou.usra.edu/meetings/lpsc2016/pdf/2036.pdf
- Evidence for Two Impacting Populations in the Early Bombardment of Mars and the Moon
- Bottke, W. F.; Nesvorny, D.; Roig, F.; Marchi, S.; Vokrouhlicky, D. (2017)
- 48th Lunar and Planetary Science Conference.
- https://www.hou.usra.edu/meetings/lpsc2017/pdf/2572.pdf
- Cometary impact rates on the Moon and planets during the late heavy bombardment
- Rickman, H.; Wiśniowski, T.; Gabryszewski, R.; Wajer, P.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A. (2017)
- Astronomy & Astrophysics, Volume 598, id.A67, 15 pp.
- https://www.aanda.org/articles/aa/abs/2017/02/aa29376-16/aa29376-16.html
Extended
edit- An Extended Episode of Early Bombardment in the Inner Solar System. Evidence from Lunar Samples and Meteorites
- Norman, M. D.; Nemchin, A. A. (2012)
- Third Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, held May 21-25, 2012, in Lake Tahoe, Nevada. LPI Contribution No. 1680, id.7051
- http://www.lpi.usra.edu/meetings/earlymars2012/pdf/7051.pdf
- Impact spherules as a record of an ancient heavy bombardment of Earth
- Johnson, B. C.; Melosh, H. J. (2012)
- Nature, Volume 485, Issue 7396, pp. 75-77.
- http://www.nature.com/nature/journal/v485/n7396/full/nature10982.html
- A sawtooth-like timeline for the first billion years of lunar bombardment
- Morbidelli, A.; Marchi, S.; Bottke, W. F.; Kring, D. A. (2012)
- Earth and Planetary Science Letters, Volume 355, p. 144-151.
- http://www.sciencedirect.com/science/article/pii/S0012821X12004190
- http://arxiv.org/pdf/1208.4624v1.pdf
- Empirical Studies of Lunar Bombardment Around 3.6-4 Gy Ago
- Hartmann, W. K. (2012)
- Workshop on the Early Solar System Bombardment II, held 1-3 February 2012, in Houston, Texas. LPI Contribution No. 1649, p.28-29
- http://www.lpi.usra.edu/meetings/bombardment2012/pdf/4025.pdf
- The bombardment history of the Moon as recorded by 40Ar-39Ar chronology
- Fernandes, V. A.; Fritz, J.; Weiss, B. P.; Garrick-Bethell, I.; Shuster, D. L. (2013)
- Meteoritics & Planetary Science, Volume 48, Issue 2, pp. 241-269
- http://onlinelibrary.wiley.com/doi/10.1111/maps.12054/abstract
- Ages of large lunar impact craters and implications for bombardment during the Moon's middle age
- Kirchoff, Michelle R.; Chapman, Clark R.; Marchi, Simone; Curtis, Kristen M.; Enke, Brian; Bottke, William F. (2013)
- Icarus, Volume 225, Issue 1, p. 325-341.
- http://www.sciencedirect.com/science/article/pii/S0019103513001322
- Cataclysm No More
- New Views on the Timing and Delivery of Lunar Impactors
- Zellner, Nicolle E. B.
- Origins of Life and Evolution of Biospheres, Volume 47, Issue 3, pp.261-280
- https://link.springer.com/article/10.1007%2Fs11084-017-9536-3
- https://arxiv.org/ftp/arxiv/papers/1704/1704.06694.pdf
Mechanisms
edit- Could the Lunar Late Heavy Bombardment Have Been Triggered by the Formation of Uranus and Neptune?
- Levison, Harold F.; Dones, Luke; Chapman, Clark R.; Stern, S. Alan; Duncan, Martin J.; Zahnle, Kevin (2001)
- Icarus, Volume 151, Issue 2, pp. 286-306.
- http://www.sciencedirect.com/science/article/pii/S0019103501966084
- A plausible cause of the late heavy bombardment
- Morbidelli, A.; Petit, J.-M.; Gladman, B.; Chambers, J. (2001)
- Meteoritics & Planetary Science, vol. 36, no. 3, p. 371-380
- http://articles.adsabs.harvard.edu/full/2001M%26PS...36..371M
- Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets
- Gomes, R.; Levison, H. F.; Tsiganis, K.; Morbidelli, A. (2005)
- Nature, Volume 435, Issue 7041, pp. 466-469.
- http://www.nature.com/nature/journal/v435/n7041/abs/nature03676.html
- Dynamical transport of asteroid fragments from the ν6 resonance
- Ito, Takashi; Malhotra, Renu (2006)
- Advances in Space Research, Volume 38, Issue 4, p. 817-825.
- http://www.sciencedirect.com/science/article/pii/S0273117706004182
- http://arxiv.org/pdf/astro-ph/0611548v1.pdf
- On the stability of a planet between Mars and the asteroid belt. Implications for the Planet V hypothesis
- Chambers, J. E. (2007)
- Icarus, Volume 189, Issue 2, p. 386-400.
- http://www.sciencedirect.com/science/article/pii/S0019103507000644
- A New Dynamical Model for the Lunar Late Heavy Bombardment
- 33rd Annual Lunar and Planetary Science Conference, March 11-15, 2002, Houston, Texas, abstract no.1093
- http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1093.pdf
- Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment?
- Bottke, William F.; Levison, Harold F.; Nesvorný, David; Dones, Luke (2007)
- Icarus, Volume 190, Issue 1, p. 203-223.
- http://www.sciencedirect.com/science/article/pii/S0019103507000966
- Orbital Evolution of the Moon and the Lunar Cataclysm
- Cuk, M. (2008)
- Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas. LPI Contribution No. 1439., p.29
- http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3006.pdf
- The fate of primordial lunar Trojans
- Ćuk, Matija; Gladman, Brett J. (2009)
- Icarus, Volume 199, Issue 2, p. 237-244.
- http://www.sciencedirect.com/science/article/pii/S0019103508003862
- Dynamical evolution of the Hungaria asteroids
- McEachern, Firth M.; Ćuk, Matija; Stewart, Sarah T. (2010)
- Icarus, Volume 210, Issue 2, p. 644-654.
- http://www.sciencedirect.com/science/article/pii/S001910351000309X
- Constraints on the source of lunar cataclysm impactors
- Ćuk, Matija; Gladman, Brett J.; Stewart, Sarah T. (2010)
- Icarus, Volume 207, Issue 2, p. 590-594.
- http://www.sciencedirect.com/science/article/pii/S0019103509005028
- http://arxiv.org/pdf/0912.1847v1.pdf
- Comment on "Constraints on the source of lunar cataclysm impactors" (Cuk et al., 2010, Icarus 207, 590-594)
- Malhotra, Renu; Strom, Robert G. (2011)
- Icarus, Volume 216, Issue 1, p. 359-362.
- http://www.sciencedirect.com/science/article/pii/S0019103510004586
- Rebuttal to the comment by Malhotra and Strom on "Constraints on the source of lunar cataclysm impactors"
- Ćuk, Matija; Gladman, Brett J.; Stewart, Sarah T. (2011)
- Icarus, Volume 216, Issue 1, p. 363-365.
- http://www.sciencedirect.com/science/article/pii/S0019103511003289
- The terrestrial Planet V hypothesis as the mechanism for the origin of the late heavy bombardment
- Brasser, R.; Morbidelli, A. (2011)
- Astronomy & Astrophysics, Volume 535, id.A41, 8 pp.
- http://www.aanda.org/articles/aa/abs/2011/11/aa17336-11/aa17336-11.html
- An Archaean heavy bombardment from a destabilized extension of the asteroid belt
- Bottke, William F.; Vokrouhlický, David; Minton, David; Nesvorný, David; Morbidelli, Alessandro; Brasser, Ramon; Simonson, Bruce; Levison, Harold F. (2012)
- Nature, Volume 485, Issue 7396, pp. 78-81.
- http://www.nature.com/nature/journal/v485/n7396/full/nature10967.html
- Chronology and sources of lunar impact bombardment
- Ćuk, Matija (2012)
- Icarus, Volume 218, Issue 1, p. 69-79.
- http://www.sciencedirect.com/science/article/pii/S0019103511004581
- http://arxiv.org/pdf/1112.0046v1.pdf
- Long-term stability of horseshoe orbits
- Ćuk, Matija; Hamilton, Douglas P.; Holman, Matthew J. (2012)
- Monthly Notices of the Royal Astronomical Society, Volume 426, Issue 4, pp. 3051-3056
- http://mnras.oxfordjournals.org/content/426/4/3051
- http://arxiv.org/pdf/1206.1888v2.pdf
- Consolidating and Crushing Exoplanets. Did It Happen Here?
- Volk, Kathryn; Gladman, Brett (2015)
- The Astrophysical Journal Letters, Volume 806, Issue 2, article id. L26, 6 pp.
- http://iopscience.iop.org/article/10.1088/2041-8205/806/2/L26
- http://arxiv.org/pdf/1502.06558v2.pdf
- Debris from Borealis Basin Formation as the Primary Impactor Population of Late Heavy Bombardment
- Minton, D. A.; Jackson, A. P.; Asphaug, E.; Fassett, C. I.; Richardson, J. E. (2015)
- Workshop on Early Solar System Impact Bombardment III, LPI Contribution No. 1826, p.3033
- http://www.hou.usra.edu/meetings/bombardment2015/pdf/3033.pdf
- New Insights into the Martian Late Heavy Bombardment
- Bottke, W. F.; Marchi, S.; Vokrouhlicky, D.; Robbins, S.; Hynek, B.; Morbidelli, A.
- 46th Lunar and Planetary Science Conference, LPI Contribution No. 1832, p.1484
- http://www.hou.usra.edu/meetings/lpsc2015/pdf/1484.pdf
- Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors
- Johnson, Brandon C.; Collins, Gareth S.; Minton, David A.; Bowling, Timothy J.; Simonson, Bruce M.; Zuber, Maria T. (2016)
- Icarus, Volume 271, p. 350-359.
- http://www.sciencedirect.com/science/article/pii/S0019103516000907
- Modeling the Historical Flux of Planetary Impactors
- Nesvorný, David; Roig, Fernando; Bottke, William F. (2017)
- The Astronomical Journal, Volume 153, Issue 3, article id. 103, 22 pp.
- http://iopscience.iop.org/article/10.3847/1538-3881/153/3/103
- https://arxiv.org/pdf/1612.08771.pdf
- The Lunar Late Heavy Bombardment as a Tail-end of Planet Accretion
- Morbidelli, A.; Nesvorny, D.; Laurenz, V.; Marchi, S.; Rubie, D. C.; Elkins-Tanton, L.; Jacobson, S. A. (2017)
- 48th Lunar and Planetary Science Conference
- https://www.hou.usra.edu/meetings/lpsc2017/pdf/2298.pdf
- Planetary Chaos and the (In)stability of Hungaria Asteroids
- Ćuk, Matija; Nesvorný, David
- eprint arXiv:1704.05552
- https://arxiv.org/pdf/1704.05552
Life
edit- Microbial habitability of the Hadean Earth during the late heavy bombardment
- Abramov, Oleg; Mojzsis, Stephen J. (2009)
- Nature, Volume 459, Issue 7245, pp. 419-422.
- http://www.nature.com/nature/journal/v459/n7245/full/nature08015.html
Terrestrial Planets
edit- Building the terrestrial planets. Constrained accretion in the inner Solar System
- Raymond, Sean N.; O'Brien, David P.; Morbidelli, Alessandro; Kaib, Nathan A. (2009)
- Icarus, Volume 203, Issue 2, p. 644-662. (Icarus Homepage)
- http://www.sciencedirect.com/science/article/pii/S0019103509002279
- http://arxiv.org/pdf/0905.3750v1.pdf
- The Effect of an Early Planetesimal-Driven Migration of the Giant Planets on Terrestrial Planet Formation
- Walsh, K. J.; Morbidelli, A. (2011)
- Astronomy and Astrophysics, Volume 526, id.A126, 8 pp.
- http://www.aanda.org/articles/aa/abs/2011/02/aa15277-10/aa15277-10.html
- http://arxiv.org/pdf/1101.3776.pdf
- Constraining the primordial orbits of the terrestrial planets
- Brasser, R.; Walsh, K. J.; Nesvorný, D. (2013)
- Monthly Notices of the Royal Astronomical Society, Volume 433, Issue 4, p.3417-3427
- http://mnras.oxfordjournals.org/content/433/4/3417
- http://arxiv.org/pdf/1306.0975v1.pdf
- Terrestrial Planet Formation during the Migration and Resonance Crossings of the Giant Planets
- Lykawka, Patryk Sofia; Ito, Takashi (2013)
- The Astrophysical Journal, Volume 773, Issue 1, article id. 65, 16 pp.
- http://iopscience.iop.org/0004-637X/773/1/65/
- http://arxiv.org/ftp/arxiv/papers/1306/1306.3287.pdf
- Terrestrial Planet Formation in a Protoplanetary Disk with a Local Mass Depletion. A Successful Scenario for the Formation of Mars
- Izidoro, A.; Haghighipour, N.; Winter, O. C.; Tsuchida, M. (2014)
- The Astrophysical Journal, Volume 782, Issue 1, article id. 31, 20 pp.
- http://iopscience.iop.org/article/10.1088/0004-637X/782/1/31
- http://arxiv.org/pdf/1312.3959v1.pdf
- Terrestrial planet formation constrained by Mars and the structure of the asteroid belt
- Izidoro, André; Raymond, Sean N.; Morbidelli, Alessandro; Winter, Othon C. (2015)
- Monthly Notices of the Royal Astronomical Society, Volume 453, Issue 4, p.3619-3634
- http://mnras.oxfordjournals.org/content/453/4/3619
- http://arxiv.org/pdf/1508.01365v1.pdf
- The fragility of the terrestrial planets during a giant-planet instability
- Kaib, Nathan A.; Chambers, John E. (2016)
- Monthly Notices of the Royal Astronomical Society, Volume 455, Issue 4, p.3561-3569
- http://mnras.oxfordjournals.org/content/455/4/3561
- http://arxiv.org/pdf/1510.08448v1.pdf
- Jumping Jupiter Can Explain Mercury’s Orbit
- Roig, Fernando; Nesvorný, David; DeSouza, Sandro Ricardo (2016)
- The Astrophysical Journal Letters, Volume 820, Issue 2, article id. L30, 5 pp.
- http://iopscience.iop.org/article/10.3847/2041-8205/820/2/L30/meta
- https://arxiv.org/pdf/1603.02502
- Effects of Dynamical Evolution of Giant Planets on the Delivery of Atmophile Elements During Terrestrial Planet Formation
- Matsumura, Soko; Brasser, Ramon; Ida, Shigeru (2016)
- eprint arXiv:1512.08182
- Formation of terrestrial planets in disks with different surface density profiles
- Haghighipour, Nader; Winter, Othon C. (2016)
- Celestial Mechanics and Dynamical Astronomy, Volume 124, Issue 3, pp.235-268
- http://link.springer.com/article/10.1007%2Fs10569-015-9663-y
- http://arxiv.org/pdf/1512.02852v1.pdf
Asteroid Belt
edit- Secular resonances inside mean-motion commensurabilities. the 4/1, 3/1, 5/2 and 7/3 cases.
- Moons, Michèle; Morbidelli, Alessandro (1995)
- Icarus, Volume 114, Issue 1, p. 33-50.
- http://www.sciencedirect.com/science/article/pii/S001910358571041X
- The Determinant Role of Jupiter's Great Inequality in the Depletion of the Hecuba Gap
- Ferraz-Mello, S.; Michtchenko, T. A.; Roig, F. (1998)
- The Astronomical Journal, Volume 116, Issue 3, pp. 1491-1500.
- http://iopscience.iop.org/1538-3881/116/3/1491
- The Primordial Excitation and Clearing of the Asteroid Belt
- Petit, Jean-Marc; Morbidelli, Alessandro; Chambers, John (2001)
- Icarus, Volume 153, Issue 2, pp. 338-347.
- http://www.sciencedirect.com/science/article/pii/S0019103501967028
- Regular and Chaotic Dynamics in the Mean-Motion Resonances. Implications for the Structure and Evolution of the Asteroid Belt
- Nesvorný, D.; Ferraz-Mello, S.; Holman, M.; Morbidelli, A. (2002)
- Asteroids III, W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (eds), University of Arizona Press, Tucson, p.379-394
- http://adsabs.harvard.edu/abs/2002aste.conf..379N
- The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids
- Bottke, W. F., Jr.; Vokrouhlický, D.; Rubincam, D. P.; Broz, M. (2002)
- Asteroids III, W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (eds), University of Arizona Press, Tucson, p.395-408
- http://adsabs.harvard.edu/abs/2002aste.conf..395B
- The Yarkovsky and Yorp Effects. Implications for Asteroid Dynamics
- Bottke, William F., Jr.; Vokrouhlický, David; Rubincam, David P.; Nesvorný, David (2006)
- Annual Review of Earth and Planetary Sciences, vol. 34, p.157-191
- http://www.annualreviews.org/doi/abs/10.1146/annurev.earth.34.031405.125154
- Non-gravitational forces acting on small bodies
- Brož, Miroslav; Vokrouhlický, D.; Bottke, W. F.; Nesvorný, D.; Morbidelli, A.; Capek, D. (2006)
- Asteroids, Comets, Meteors, Proceedings of the 229th Symposium of the International Astronomical Union held in Búzios, Rio de Janeiro, Brasil August 7-12, 2005, Edited by Daniela, L.; Sylvio Ferraz, M.; Angel, F. Julio Cambridge: Cambridge University Press, 2006., pp.351-36
- http://articles.adsabs.harvard.edu/full/2006IAUS..229..351B
- The primordial excitation and clearing of the asteroid belt—Revisited
- O'Brien, David P.; Morbidelli, Alessandro; Bottke, William F. (2007)
- Icarus, Volume 191, Issue 2, p. 434-452.
- http://www.sciencedirect.com/science/article/pii/S0019103507002230
- Asteroid families in the first-order resonances with Jupiter
- Brož, M.; Vokrouhlický, D. (2008)
- Monthly Notices of the Royal Astronomical Society, Volume 390, Issue 2, pp. 715-732.
- http://mnras.oxfordjournals.org/content/390/2/715
- http://arxiv.org/pdf/1104.4004v1.pdf
- Contamination of the asteroid belt by primordial trans-Neptunian objects
- Levison, Harold F.; Bottke, William F.; Gounelle, Matthieu; Morbidelli, Alessandro; Nesvorný, David; Tsiganis, Kleomenis (2009)
- Nature, Volume 460, Issue 7253, pp. 364-366.
- http://www.nature.com/nature/journal/v460/n7253/full/nature08094.html
- A record of planet migration in the main asteroid belt
- Minton, David A.; Malhotra, Renu (2009)
- Nature, Volume 457, Issue 7233, pp. 1109-1111.
- http://www.nature.com/nature/journal/v457/n7233/full/nature07778.html
- http://arxiv.org/pdf/0906.4574v1.pdf
- Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System
- Minton, David A.; Malhotra, Renu (2010)
- Icarus, Volume 207, Issue 2, p. 744-757.
- http://www.sciencedirect.com/science/article/pii/S0019103509004953
- http://arxiv.org/pdf/0909.3875v2.pdf
- Secular Resonance Sweeping of the Main Asteroid Belt During Planet Migration
- Minton, David A.; Malhotra, Renu (2011)
- The Astrophysical Journal, Volume 732, Issue 1, article id. 53, 12 pp.
- http://iopscience.iop.org/0004-637X/732/1/53/
- http://arxiv.org/pdf/1102.3131v2.pdf
- Did the Hilda collisional family form during the late heavy bombardment?
- Brož, M.; Vokrouhlický, D.; Morbidelli, A.; Nesvorný, D.; Bottke, W. F. (2011)
- Monthly Notices of the Royal Astronomical Society, Volume 414, Issue 3, pp. 2716-2727.
- http://mnras.oxfordjournals.org/content/414/3/2716
- http://arxiv.org/pdf/1109.1114v1.pdf
- Origin of the orbital distribution of main-belt asteroid
- Tsinganis, K. (2011)
- 10th Hellenic Astronomical Conference, Proceedings of the conference held at Ioannina, Greece, 5-8 September 2011. Edited by Iossif Papadakis and Anastasios Anastasiadis., pp.21-21
- http://adsabs.harvard.edu/abs/2012hell.conf...21T
- Where Did Ceres Accrete?
- McKinnon, W. B. (2012)
- Asteroids, Comets, Meteors 2012, Proceedings of the conference held May 16-20, 2012 in Niigata, Japan. LPI Contribution No. 1667, id.6475
- http://www.lpi.usra.edu/meetings/acm2012/pdf/6475.pdf
- Constraining the cometary flux through the asteroid belt during the late heavy bombardment
- Brož, M.; Morbidelli, A.; Bottke, W. F.; Rozehnal, J.; Vokrouhlický, D.; Nesvorný, D. (2013)
- Astronomy & Astrophysics, Volume 551, id.A117, 16 pp.
- http://www.aanda.org/articles/aa/abs/2013/03/aa19296-12/aa19296-12.html
- http://arxiv.org/pdf/1301.6221v1.pdf
- On the Origin and Evolution of Differentiated Planetesimals
- Bottke, W. F.; Asphaug, E. (2013)
- 44th Lunar and Planetary Science Conference, Contribution No. 1719, p.1672
- http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1672.pdf
- The Evolution of Giant Impact Ejecta and the Age of the Moon
- Bottke, W. F.; Vokrouhlicky, D.; Marchi, S.; Swindle, T.; Scott, E. R. D.; Weirich, J. R. (2014)
- 45th Lunar and Planetary Science Conference, held 17-21 March, 2014 at The Woodlands, Texas. LPI Contribution No. 1777, p.1611
- http://www.hou.usra.edu/meetings/lpsc2014/pdf/1611.pdf
- Solar System evolution from compositional mapping of the asteroid belt
- DeMeo, F. E.; Carry, B. (2014)
- Nature, Volume 505, Issue 7485, pp. 629-634.
- http://www.nature.com/nature/journal/v505/n7485/full/nature12908.html
- http://arxiv.org/ftp/arxiv/papers/1408/1408.2787.pdf
- A six-part collisional model of the main asteroid belt
- Cibulková, H.; Brož, M.; Benavidez, P. G. (2014)
- Icarus, Volume 241, p. 358-372.
- http://www.sciencedirect.com/science/article/pii/S0019103514003820
- http://arxiv.org/pdf/1407.6143v1
- The Dynamical Evolution of the Asteroid Belt
- Morbidelli, Alessandro; Walsh, Kevin J.; O'Brien, David P.; Minton, David A.; Bottke, William F. (2015)
- eprint arXiv:1501.06204
- http://arxiv.org/pdf/1501.06204v1
- The origin of long-lived asteroids in the 2/1 mean-motion resonance with Jupiter
- Chrenko, O.; Brož, M.; Nesvorný, D.; Tsiganis, K.; Skoulidou, D. K. (2015)
- Monthly Notices of the Royal Astronomical Society, Volume 451, Issue 3, p.2399-2416
- http://mnras.oxfordjournals.org/content/451/3/2399
- http://arxiv.org/pdf/1505.04329v1.pdf
- The evolution of asteroids in the jumping-Jupiter migration model
- Roig, Fernando; Nesvorný, David (2015)
- eprint arXiv:1509.06105
- http://arxiv.org/pdf/1509.06105v2.pdf
- Dynamical dispersal of primordial asteroid families
- Brasil, P. I. O.; Roig, F.; Nesvorný, D.; Carruba, V.; Aljbaae, S.; Huaman, M. E. (2016)
- Icarus, Volume 266, p. 142-151.
- http://www.sciencedirect.com/science/article/pii/S0019103515005254
- Is the Grand Tack model compatible with the orbital distribution of main belt asteroids?
- Deienno, Rogerio; Gomes, Rodney S.; Walsh, Kevin J.; Morbidelli, Alessandro; Nesvorný, David (2016)
- Icarus, Volume 272, p. 114-124
- http://www.sciencedirect.com/science/article/pii/S0019103516001214
- There's Too Much Mantle Material in the Asteroid Belt
- Jacobson, S. A.; DeMeo, F.; Morbidelli, A.; Carry, B.; Frost, D.; Rubie, D. C. (2016)
- 47th Lunar and Planetary Science Conference Contribution No. 1903, p.1895
- http://www.hou.usra.edu/meetings/lpsc2016/pdf/1895.pdf
- The Asteroid Belt as a Relic from a Chaotic Early Solar System
- Izidoro, André; Raymond, Sean N.; Pierens, Arnaud; Morbidelli, Alessandro; Winter, Othon C.; Nesvorny`, David (2016)
- The Astrophysical Journal, Volume 833, Issue 1, article id. 40, 18 pp
- http://iopscience.iop.org/article/10.3847/1538-4357/833/1/40/meta
- https://arxiv.org/pdf/1609.04970
- Establishing different size distributions in the asteroid belt
- Jacobson, Seth A.; Morbidelli, Alessandro (2016)
- American Astronomical Society, DDA meeting #47, id.#300.04
- http://adsabs.harvard.edu/abs/2016DDA....4730004J
- Footprints of a possible Ceres asteroid paleo-family
- Carruba, V.; Nesvorný, D.; Marchi, S.; Aljbaae, S. (2016)
- Monthly Notices of the Royal Astronomical Society, Volume 458, Issue 1, p.1117-1126
- http://mnras.oxfordjournals.org/content/458/1/1117
- http://arxiv.org/pdf/1602.04736v1.pdf
- Magnitude and timing of the giant planet instability. A reassessment from the perspective of the asteroid belt
- Toliou, Athanasia; Morbidelli, Alessandro; Tsiganis, Kleomenis (2016)
- Astronomy & Astrophysics, Volume 592, id.A72, 8 pp.
- https://www.aanda.org/articles/aa/abs/2016/08/aa28658-16/aa28658-16.html
- http://arxiv.org/pdf/1606.04330v1.pdf
- Capture of Trans-Neptunian Planetesimals in the Main Asteroid Belt
- Vokrouhlický, David; Bottke, William F.; Nesvorný, David (2016)
- The Astronomical Journal, Volume 152, Issue 2, article id. 39, 20 pp
- http://iopscience.iop.org/article/10.3847/0004-6256/152/2/39/meta
- Scattering V-type asteroids during the giant planet instability, a step for Jupiter, a leap for basalt
- Brasil, P. I. O.; Roig, F.; Nesvorný, D.; Carruba, V. (2017)
- Monthly Notices of the Royal Astronomical Society, Volume 468, Issue 1, p.1236-1244
- https://academic.oup.com/mnras/article-abstract/468/1/1236/3059980/
- https://arxiv.org/pdf/1703.00474
- The Color-Magnitude Distribution of Hilda Asteroids. Comparison with Jupiter Trojans
- Wong, Ian; Brown, Michael E. (2017)
- The Astronomical Journal, Volume 153, Issue 2, article id. 69, 7 pp.
- http://iopscience.iop.org/article/10.3847/1538-3881/153/2/69/meta
- https://arxiv.org/pdf/1701.00367
- 0.7-2.5 μm Spectra of Hilda Asteroids
- Wong, Ian; Brown, Michael E.; Emery, Joshua P. (2017)
- The Astronomical Journal, Volume 154, Issue 3, article id. 104, 9 pp.
- http://iopscience.iop.org/article/10.3847/1538-3881/aa8406/meta
- https://arxiv.org/pdf/1707.09064
Trojans
edit- The capture of Trojan asteroids by the giant planets during planetary migration
- Lykawka, P. S.; Horner, J. (2010)
- Monthly Notices of the Royal Astronomical Society, Volume 405, Issue 2, pp. 1375-1383.
- http://mnras.oxfordjournals.org/content/405/2/1375
- http://arxiv.org/ftp/arxiv/papers/1003/1003.2137.pdf
- Capturing Trojans and Irregular Satellites - the key required to unlock planetary migration
- Horner, Jonathan; Koch, F. Elliott; Sofia Lykawka, Patryk (2013)
- http://arxiv.org/ftp/arxiv/papers/1302/1302.2304.pdf
Jupiter Trojans
edit- Dynamical Effects of Planetary Migration on Primordial Trojan-Type Asteroids
- Gomes, R. S. (1998)
- The Astronomical Journal, Volume 116, Issue 5, pp. 2590-2597
- http://iopscience.iop.org/1538-3881/116/5/2590/
- Planetary Migration and the Effects of Mean Motion Resonances on Jupiter's Trojan Asteroids
- Michtchenko, T. A.; Beaugé, C.; Roig, F. (2001)
- The Astronomical Journal, Volume 122, Issue 6, pp. 3485-3491.
- http://iopscience.iop.org/1538-3881/122/6/3485/
- Origin and Evolution of Trojan Asteroids
- Marzari, F.; Scholl, H.; Murray, C.; Lagerkvist, C. (2002)
- Asteroids III, W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (eds), University of Arizona Press, Tucson, p.725-738
- http://adsabs.harvard.edu/abs/2002aste.conf..725M
- Clues to the origin of jupiter's trojans. the libration amplitude distribution
- Marzari, F.; Tricarico, P.; Scholl, H. (2003)
- Icarus, Volume 162, Issue 2, p. 453-459.
- http://www.sciencedirect.com/science/article/pii/S0019103503000265
- Chaotic capture of Jupiter's Trojan asteroids in the early Solar System
- Morbidelli, A.; Levison, H. F.; Tsiganis, K.; Gomes, R. (2005)
- Nature, Volume 435, Issue 7041, pp. 462-465.
- http://www.nature.com/nature/journal/v435/n7041/abs/nature03540.html
- The resonant structure of Jupiter's Trojan asteroids - I. Long-term stability and diffusion
- Robutel, P.; Gabern, F. (2006)
- Monthly Notices of the Royal Astronomical Society, Volume 372, Issue 4, pp. 1463-1482.
- http://articles.adsabs.harvard.edu/full/2006MNRAS.372.1463R
- Dynamics of Jupiter Trojans during the 2/1 mean motion resonance crossing of Jupiter and Saturn
- Marzari, F.; Scholl, H. (2007)
- Monthly Notices of the Royal Astronomical Society, Volume 380, Issue 2, pp. 479-488.
- http://articles.adsabs.harvard.edu/full/2007MNRAS.380..479M
- http://arxiv.org/pdf/0707.0617v1.pdf
- The resonant structure of Jupiter's Trojan asteroids - II. What happens for different configurations of the planetary system
- Robutel, P.; Bodossian, J. (2009)
- Monthly Notices of the Royal Astronomical Society, Volume 399, Issue 1, pp. 69-87.
- http://mnras.oxfordjournals.org/content/399/1/69
- http://arxiv.org/pdf/0809.3526v2.pdf
- A Dynamical Origin Of The Leading/trailing Asymmetry In Jupiter's Trojan Swarms?
- O'Brien, David P. (2012)
- American Astronomical Society, DPS meeting #44, #210.10
- http://adsabs.harvard.edu/abs/2012DPS....4421010O
- Capture of Trojans by Jumping Jupiter
- Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2013)
- The Astrophysical Journal, Volume 768, Issue 1, article id. 45, 8 pp.
- http://iopscience.iop.org/0004-637X/768/1/45/
- http://arxiv.org/pdf/1303.2900v1.pdf
- Asymmetry Between the L4 and L5 Swarms of Jupiter Trojans
- Slyusarev, I. G. (2013)
- 44th Lunar and Planetary Science Conference, held March 18-22, 2013 in The Woodlands, Texas. LPI Contribution No. 1719, p.2223
- http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2223.pdf
- Giga-year evolution of Jupiter Trojans and the asymmetry problem
- Di Sisto, Romina P.; Ramos, Ximena S.; Beaugé, Cristián (2014)
- Icarus, Volume 243, p. 287-295.
- http://www.sciencedirect.com/science/article/pii/S0019103514004643
- The Complex History of Trojan Asteroids
- Emery, Joshua P.; Marzari, Francesco; Morbidelli, Alessandro; French, Linda M.; Grav, Tommy (2015)
- eprint arXiv:1506.01658
- http://arxiv.org/pdf/1506.01658v1
Neptune Trojans
edit- How Long-Lived Are the Hypothetical Trojan Populations of Saturn, Uranus, and Neptune?
- Nesvorný, D.; Dones, L. (2002)
- Icarus, Volume 160, Issue 2, p. 271-288.
- http://www.sciencedirect.com/science/article/pii/S0019103502969617
- Resonance Occupation in the Kuiper Belt. Case Examples of the 5
- 2 and Trojan Resonances
- Chiang, E. I.; Jordan, A. B.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Elliot, J. L.; Kern, S. D.; Trilling, D. E.; Meech, K. J.; Wagner, R. M. (2003)
- The Astronomical Journal, Volume 126, Issue 1, pp. 430-443.
- http://iopscience.iop.org/1538-3881/126/1/430/
- http://arxiv.org/pdf/astro-ph/0301458v3.pdf
- Survival of Trojan-type companions of Neptune during primordial planet migration
- Kortenkamp, Stephen J.; Malhotra, Renu; Michtchenko, Tatiana (2004)
- Icarus, Volume 167, Issue 2, p. 347-359.
- http://www.sciencedirect.com/science/article/pii/S0019103503003221
- http://arxiv.org/pdf/astro-ph/0305572v1.pdf
- Neptune Trojans as a Test Bed for Planet Formation
- Chiang, E. I.; Lithwick, Y. (2005)
- The Astrophysical Journal, Volume 628, Issue 1, pp. 520-532.
- http://iopscience.iop.org/0004-637X/628/1/520/
- http://arxiv.org/pdf/astro-ph/0502276v2.pdf
- On the stability of the Neptune Trojans
- Dvorak, R.; Schwarz, R.; Süli, Á.; Kotoulas, T. (2007)
- Monthly Notices of the Royal Astronomical Society, Volume 382, Issue 3, pp. 1324-1330.
- http://mnras.oxfordjournals.org/content/382/3/1324
- http://articles.adsabs.harvard.edu/full/2007MNRAS.382.1324D
- The origin of the high-inclination Neptune Trojan 2005 TN53
- Li, J.; Zhou, L.-Y.; Sun, Y.-S. (2007)
- Astronomy and Astrophysics, Volume 464, Issue 2, pp.775-778
- http://www.aanda.org/articles/aa/abs/2007/11/aa6297-06/aa6297-06.html
- Chaotic Capture of Neptune Trojans
- Nesvorný, David; Vokrouhlický, David (2009)
- The Astronomical Journal, Volume 137, Issue 6, pp. 5003-5011.
- http://iopscience.iop.org/1538-3881/137/6/5003/
- The dynamics of Neptune Trojan - I. The inclined orbits
- Zhou, Li-Yong; Dvorak, Rudolf; Sun, Yi-Sui (2009)
- Monthly Notices of the Royal Astronomical Society, Volume 398, Issue 3, pp. 1217-1227.
- http://mnras.oxfordjournals.org/content/398/3/1217
- http://arxiv.org/pdf/0906.5075v1.pdf
- The dynamics of Neptune Trojans - II. Eccentric orbits and observed objects
- Zhou, Li-Yong; Dvorak, Rudolf; Sun, Yi-Sui (2011)
- Monthly Notices of the Royal Astronomical Society, Volume 410, Issue 3, pp. 1849-1860.
- http://mnras.oxfordjournals.org/content/410/3/1849
- http://arxiv.org/pdf/1007.5362v1.pdf
- Origin and dynamical evolution of Neptune Trojans - I. Formation and planetary migration
- Lykawka, P. S.; Horner, J.; Jones, B. W.; Mukai, T. (2009)
- Monthly Notices of the Royal Astronomical Society, Volume 398, Issue 4, pp. 1715-1729.
- http://mnras.oxfordjournals.org/content/398/4/1715
- http://arxiv.org/ftp/arxiv/papers/0909/0909.0404.pdf
- Origin and dynamical evolution of Neptune Trojans - II. Long-term evolution
- Lykawka, P. S.; Horner, J.; Jones, B. W.; Mukai, T. (2011)
- Monthly Notices of the Royal Astronomical Society, Volume 412, Issue 1, pp. 537-550.
- http://mnras.oxfordjournals.org/content/412/1/537
- http://arxiv.org/ftp/arxiv/papers/1011/1011.1072.pdf
- Formation and dynamical evolution of the Neptune Trojans - the influence of the initial Solar system architecture
- Lykawka, P. S.; Horner, J.; Jones, B. W.; Mukai, T. (2010)
- Monthly Notices of the Royal Astronomical Society, Volume 404, Issue 3, pp. 1272-1280.
- http://mnras.oxfordjournals.org/content/404/3/1272
- http://arxiv.org/ftp/arxiv/papers/1002/1002.3673.pdf
- The Neptune Trojans. a window on the birth of the solar system
- Horner, J.; Lykawka, P. S. (2011)
- Astronomy & Geophysics, Volume 52, Issue 4, pp. 4.24-4.30.
- http://astrogeo.oxfordjournals.org/content/52/4/4.24
- The Intrinsic Neptune Trojan Orbit Distribution. Implications for the Primordial Disk and Planet Migration
- Parker, Alex H. (2015)
- Icarus, Volume 247, p. 112-125.
- http://www.sciencedirect.com/science/article/pii/S0019103514005181
- http://arxiv.org/pdf/1409.6735v1.pdf
- The Formation of Neptune Trojans under a Planetary Instability Migration Model
- Gomes, R. (2015)
- European Planetary Science Congress EPSC2015-272
- http://meetingorganizer.copernicus.org/EPSC2015/EPSC2015-272.pdf
- The effect of orbital damping during planet migration on the Inclination and Eccentricity Distributions of Neptune Trojans
- Yuan-Yuan, Chen; Yuehua, Ma; Jiaqing, Zheng
- Monthly Notices of the Royal Astronomical Society, Volume 458, Issue 4, p.4277-4284
- http://mnras.oxfordjournals.org/content/458/4/4277
- http://arxiv.org/pdf/1602.04303v1.pdf
- Neptune trojan formation during planetary instability and migration
- Gomes, R.; Nesvorný, D. (2016)
- Astronomy & Astrophysics, Volume 592, id.A146, 8 pp.
- https://www.aanda.org/articles/aa/abs/2016/08/aa27757-15/aa27757-15.html
Outer Planets
edit- Did Saturn's rings form during the Late Heavy Bombardment?
- Charnoz, Sébastien; Morbidelli, Alessandro; Dones, Luke; Salmon, Julien (2009)
- Icarus, Volume 199, Issue 2, p. 413-428.
- http://www.sciencedirect.com/science/article/pii/S0019103508003825
- http://arxiv.org/ftp/arxiv/papers/0809/0809.5073.pdf
- Calculation of the enrichment of the giant planet envelopes during the “late heavy bombardment”
- Matter, A.; Guillot, T.; Morbidelli, A. (2009)
- Planetary and Space Science, Volume 57, Issue 7, p. 816-821.
- http://www.sciencedirect.com/science/article/pii/S0032063309000269
- http://arxiv.org/pdf/1012.0692v1.pdf
- Evolution of the Obliquities of the Giant Planets in Encounters during Migration
- Lee, Man Hoi; Peale, S. J.; Pfahl, Eric; Ward, William R. (2007)
- Icarus, Volume 190, Issue 1, p. 103-109.
- http://www.sciencedirect.com/science/article/pii/S001910350700108X
- http://arxiv.org/abs/astro-ph/0612330
- Tilting Saturn without Tilting Jupiter or Ejecting an Ice Giant. Constraints on migration
- McNeil, Douglas S.; Lee, M. H. (2010)
- American Astronomical Society, DPS meeting #42, #4.04; Bulletin of the American Astronomical Society, Vol. 42, p.948
- http://adsabs.harvard.edu/abs/2010DPS....42.0404M
- Tilting Jupiter (a bit) and Saturn (a lot) during Planetary Migration
- Vokrouhlický, David; Nesvorný, David (2015)
- The Astrophysical Journal, Volume 806, Issue 1, article id. 143, 11 pp.
- http://iopscience.iop.org/article/10.1088/0004-637X/806/1/143
- http://arxiv.org/pdf/1505.02938v1
- Tilting Saturn without tilting Jupiter. Constraints on giant planet migration
- Brasser, R.; Lee, Man Hoi
- eprint arXiv:1509.06834
- http://arxiv.org/pdf/1509.06834v1
Regular Satellites
edit- Effects of Planetary Migration on Natural Satellites of the Outer Planets
- Beaugé, C.; Roig, F.; Nesvorný, D. (2002)
- Icarus, Volume 158, Issue 2, p. 483-498.
- http://www.sciencedirect.com/science/article/pii/S0019103502968880
- http://plutoportal.net/~davidn/papers/migration.pdf
- Icy Satellites of Saturn. Impact Cratering and Age Determination
- Dones, Luke; Chapman, Clark R.; McKinnon, William B.; Melosh, H. Jay; Kirchoff, Michelle R.; Neukum, Gerhard; Zahnle, Kevin J. (2009)
- Saturn from Cassini-Huygens, by Dougherty, Michele K.; Esposito, Larry W.; Krimigis, Stamatios M., ISBN 978-1-4020-9216-9. Springer Science+Business Media B.V., 2009, p. 613
- http://link.springer.com/chapter/10.1007/978-1-4020-9217-6_19
- Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment
- Barr, Amy C.; Canup, Robin M. (2010)
- Nature Geoscience, Volume 3, Issue 3, pp. 164-167.
- http://www.nature.com/ngeo/journal/v3/n3/full/ngeo746.html
- Exploring the Bombardment History of the Outer Solar System via Saturnian Satellite Cratering Records
- Richardson, J. E.; Minton, D. A.; Thomas, P. C. (2012)
- Workshop on the Early Solar System Bombardment II, held 1-3 February 2012, in Houston, Texas. LPI Contribution No. 1649, p.65-66
- http://www.lpi.usra.edu/meetings/bombardment2012/pdf/4028.pdf
- Impact-driven ice loss in outer Solar System satellites. Consequences for the Late Heavy Bombardment
- Nimmo, F.; Korycansky, D. G. (2012)
- Icarus, Volume 219, Issue 1, p. 508-510.
- http://www.sciencedirect.com/science/article/pii/S0019103512000310
- The Impact Rate on Solar System Satellites During the Late Heavy Bombardment
- Dones, Henry C. Luke; Levison, H. F. (2013)
- 44th Lunar and Planetary Science Conference, LPI Contribution No. 1719, p.2772
- http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2772.pdf
- Effects of the planetary migration on some primordial satellites of the outer planets. I. Uranus' case
- Deienno, R.; Yokoyama, T.; Nogueira, E. C.; Callegari, N.; Santos, M. T. (2011)
- Astronomy & Astrophysics, Volume 536, id.A57, 16 pp.
- http://www.aanda.org/articles/aa/abs/2011/12/aa14862-10/aa14862-10.html
- The Formation and Evolution of Gas Giant Satellites During Nice Model Orbital Migration
- Fuse, Christopher R.; Verboncoeur, R. (2012)
- American Astronomical Society, DPS meeting #44, #415.01
- http://adsabs.harvard.edu/abs/2012DPS....4441501F
- Formation of Regular Satellites from Ancient Massive Rings in the Solar System
- Crida, A.; Charnoz, S. (2012)
- Science, Volume 338, Issue 6111, pp. 1196-
- http://science.sciencemag.org/content/338/6111/1196.full
- https://arxiv.org/pdf/1301.3808
- Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in a giant impact
- Dombard, Andrew J.; Cheng, Andrew F.; McKinnon, William B.; Kay, Jonathan P.
- Journal of Geophysical Research, Volume 117, Issue E3, CiteID E03002
- http://onlinelibrary.wiley.com/doi/10.1029/2011JE004010/full
- The Behavior of Regular Satellites During the Planetary Migration
- Nogueira, Erica Cristina; Gomes, R. S.; Brasser, R. (2013)
- American Astronomical Society, DDA meeting #44, #204.21
- http://adsabs.harvard.edu/abs/2013DDA....4420421N
- Constraints on Mechanisms of Comet Disruption from Icy Satellite Craters and Dynamical Simulations
- Minton, David A.; Brasser, R.; Richardson, J. E. (2013)
- American Astronomical Society, DDA meeting #44, #200.05
- http://adsabs.harvard.edu/abs/2013DDA....4420005M
- Analysis on the Evolution of a Pluto-like System During Close Encounters with the Giant Planets in the Framework of the Nice Model
- Pires Dos Santos, Pryscilla Maria; Giuliatti-Winter, S. M.; Gomes, R. S. (2013)
- American Astronomical Society, DDA meeting #44, #204.18
- http://adsabs.harvard.edu/abs/2013DDA....4420418P
- Orbital Perturbations of the Galilean Satellites During Planetary Encounters
- Deienno, R.; Nesvorny, D.; Vokrouhlicky, D.; Yokoyama, T. (2014)
- The Astronomical Journal, Volume 148, Issue 2, article id. 25, 9 pp.
- http://iopscience.iop.org/1538-3881/148/2/25/
- http://arxiv.org/pdf/1405.1880v1
- Excitation of the Orbital Inclination of Iapetus during Planetary Encounters
- Nesvorny, David; Vokrouhlicky, David; Deienno, Rogerio; Walsh, Kevin J. (2014)
- The Astronomical Journal, Volume 148, Issue 3, article id. 52, 9 pp.
- http://iopscience.iop.org/1538-3881/148/3/52/
- http://arxiv.org/pdf/1406.3600v1.pdf
- Constraints on Planetesimal Disk Mass from the Cratering Record and Equatorial Ridge on Iapetus
- Rivera-Valentin, E. G.; Barr, A. C.; Lopez Garcia, E. J.; Kirchoff, M. R.; Schenk, P. M. (2014)
- The Astrophysical Journal, Volume 792, Issue 2, article id. 127, 7 pp.
- http://iopscience.iop.org/0004-637X/792/2/127/
- http://arxiv.org/pdf/1406.6919v1.pdf
- Topographic constraints on the origin of the equatorial ridge on Iapetus
- Lopez Garcia, Erika J.; Rivera-Valentin, Edgard G.; Schenk, Paul M.; Hammond, Noah P.; Barr, Amy C. (2014)
- Icarus, Volume 237, p. 419-421.
- http://www.sciencedirect.com/science/article/pii/S0019103514002176
- http://arxiv.org/pdf/1404.2337v1
- Outer-Planet Satellite Survival During the Late Heavy Bombardment (II)
- Movshovitz, N.; Korycansky, D. G.; Nimmo, F.; Asphaug, E.; Owen, J. M. (2014)
- 45th Lunar and Planetary Science Conference, LPI Contribution No. 1777, p.2308
- http://www.hou.usra.edu/meetings/lpsc2014/pdf/2308.pdf
- Disruption and reaccretion of midsized moons during an outer solar system Late Heavy Bombardment
- Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E.; Owen, J. M.
- Geophysical Research Letters, Volume 42, Issue 2, pp. 256-263
- http://onlinelibrary.wiley.com/doi/10.1002/2014GL062133/abstract
- http://www.hou.usra.edu/meetings/bombardment2015/pdf/3013.pdf
- The evolution of a Pluto-like system during the migration of the ice giants
- Pires, Pryscilla; Giuliatti Winter, Silvia M.; Gomes, Rodney S. (2015)
- Icarus, Volume 246, p. 330-338.
- http://www.sciencedirect.com/science/article/pii/S0019103514002218
- Could Jupiter or Saturn Have Ejected a Fifth Giant Planet?
- Cloutier, Ryan; Tamayo, Daniel; Valencia, Diana (2015)
- The Astrophysical Journal, Volume 813, Issue 1, article id. 8, 11 pp.
- http://iopscience.iop.org/article/10.1088/0004-637X/813/1/8
- http://arxiv.org/pdf/1509.05397v1.pdf
- Dynamical Evidence for a Late Formation of Saturn’s Moons
- Ćuk, Matija; Dones, Luke; Nesvorný, David (2016)
- The Astrophysical Journal, Volume 820, Issue 2, article id. 97, 16 pp.
- http://iopscience.iop.org/article/10.3847/0004-637X/820/2/97/meta
- https://arxiv.org/pdf/1603.07071
- Could the Craters on the Mid-Sized Moons of Saturn Have Been Made by Satellite Debris?
- Dones, Henry C. Luke; Alvarellos, Jose; Bierhaus, Edward B.; Bottke, William; Cuk, Matija; Hamill, Patrick; Nesvorny, David; Robbins, Stuart J.; Zahnle, Kevin (2016)
- American Astronomical Society, DDA meeting #47, id.303.01
Irregular Satellites
edit- On the Inclination Distribution of the Jovian Irregular Satellites
- Carruba, Valerio; Burns, Joseph A.; Nicholson, Philip D.; Gladman, Brett J. (2002)
- Icarus, Volume 158, Issue 2, p. 434-449
- http://www.sciencedirect.com/science/article/pii/S001910350296896X
- Chaos-assisted capture of irregular moons
- Astakhov, Sergey A.; Burbanks, Andrew D.; Wiggins, Stephen; Farrelly, David (2003)
- Nature, Volume 423, Issue 6937, pp. 264-267
- http://www.nature.com/nature/journal/v423/n6937/full/nature01622.html
- An abundant population of small irregular satellites around Jupiter
- Sheppard, Scott S.; Jewitt, David C. (2003)
- Nature, Volume 423, Issue 6937, pp. 261-263.
- http://www.nature.com/nature/journal/v423/n6937/full/nature01584.html
- Orbital and Collisional Evolution of the Irregular Satellites
- Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F. (2003)
- The Astronomical Journal, Volume 126, Issue 1, pp. 398-429.
- http://iopscience.iop.org/1538-3881/126/1/398/
- Collisional Origin of Families of Irregular Satellites
- Nesvorný, David; Beaugé, Cristian; Dones, Luke (2004)
- The Astronomical Journal, Volume 127, Issue 3, pp. 1768-1783.
- http://iopscience.iop.org/1538-3881/127/3/1768/
- Gas-drag-assisted capture of Himalia's family
- Cuk, Matija; Burns, Joseph A. (2004)
- Icarus, Volume 167, Issue 2, p. 369-381.
- http://www.sciencedirect.com/science/article/pii/S0019103503003269
- The effect of Jupiter's mass growth on satellite capture. Retrograde case
- Vieira Neto, E.; Winter, O. C.; Yokoyama, T. (2004)
- Astronomy and Astrophysics, v.414, p.727-734
- http://www.aanda.org/articles/aa/abs/2004/05/aah4593/aah4593.html
- Irregular Satellites in the Context of Planet Formation
- Jewitt, David; Sheppard, Scott (2005)
- Space Science Reviews, Volume 116, Issue 1-2, pp. 441-455
- http://link.springer.com/article/10.1007%2Fs11214-005-1965-z
- Outer irregular satellites of the planets and their relationship with asteroids, comets and Kuiper Belt objects
- Sheppard, Scott S. (2005)
- Asteroids, Comets, Meteors, Proceedings of the 229th Symposium of the International Astronomical Union held in Búzios, Rio de Janeiro, Brasil August 7-12, 2005, Edited by Daniela, L.; Sylvio Ferraz, M.; Angel, F. Julio Cambridge: Cambridge University Press, 2006., pp.319-334
- http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=414776
- http://arxiv.org/pdf/astro-ph/0605041v1.pdf
- Neptune's capture of its moon Triton in a binary-planet gravitational encounter
- Agnor, Craig B.; Hamilton, Douglas P. (2006)
- Nature, Volume 441, Issue 7090, pp. 192-194.
- http://www.nature.com/nature/journal/v441/n7090/full/nature04792.html
- Effect of Jupiter's mass growth on satellite capture. The prograde case
- Vieira Neto, E.; Winter, O. C.; Yokoyama, T. (2006)
- Astronomy and Astrophysics, Volume 452, Issue 3, pp.1091-1097
- http://www.aanda.org/articles/aa/abs/2004/05/aah4593/aah4593.html
- Irregular satellite capture during planetary resonance passage
- Ćuk, Matija; Gladman, Brett J. (2006)
- Icarus, Volume 183, Issue 2, p. 362-372.
- http://www.sciencedirect.com/science/article/pii/S0019103506001011
- Irregular Satellites of the Planets. Products of Capture in the Early Solar System
- Jewitt, David; Haghighipour, Nader (2007)
- Annual Review of Astronomy & Astrophysics, vol. 45, Issue 1, pp.261-295
- http://www.annualreviews.org/doi/abs/10.1146/annurev.astro.44.051905.092459?journalCode=astro
- http://arxiv.org/pdf/astro-ph/0703059v1.pdf
- Irregular Satellites of Jupiter. a study of the capture direction
- de Oliveira, Douglas Soldan; Winter, Othon Cabo; Neto, Ernesto Vieira; de Felipe, Gislaine (2007)
- Earth, Moon, and Planets, Volume 100, Issue 3-4, pp. 233-239
- http://link.springer.com/article/10.1007%2Fs11038-007-9141-y
- Capture of Irregular Satellites during Planetary Encounters
- Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2007)
- The Astronomical Journal, Volume 133, Issue 5, pp. 1962-1976.
- http://iopscience.iop.org/1538-3881/133/5/1962/
- Irregular Satellite Capture by Exchange Reactions
- Vokrouhlický, David; Nesvorný, David; Levison, Harold F. (2008)
- The Astronomical Journal, Volume 136, Issue 4, pp. 1463-1476.
- http://iopscience.iop.org/1538-3881/136/4/1463/
- Irregular Satellites of the Giant Planets
- Nicholson, P. D.; Cuk, M.; Sheppard, S. S.; Nesvorny, D.; Johnson, T. V. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.411-424
- A new perspective on the irregular satellites of Saturn - I. Dynamical and collisional history
- Turrini, D.; Marzari, F.; Beust, H. (2008)
- Monthly Notices of the Royal Astronomical Society, Volume 391, Issue 3, pp. 1029-1051.
- http://mnras.oxfordjournals.org/content/391/3/1029
- http://arxiv.org/pdf/1011.5655v1.pdf
- A new perspective on the irregular satellites of Saturn - II. Dynamical and physical origin
- Turrini, D.; Marzari, F.; Tosi, F. (2009)
- Monthly Notices of the Royal Astronomical Society, Volume 392, Issue 1, pp. 455-474.
- http://mnras.oxfordjournals.org/content/392/1/455
- http://arxiv.org/pdf/1011.5662v1.pdf
- Three-body capture of irregular satellites. Application to Jupiter
- Philpott, Catherine M.; Hamilton, Douglas P.; Agnor, Craig B. (2010)
- Icarus, Volume 208, Issue 2, p. 824-836.
- http://www.sciencedirect.com/science/article/pii/S0019103510001351
- http://arxiv.org/pdf/0911.1369v1.pdf
- The Irregular Satellites. The Most Collisionally Evolved Populations in the Solar System
- Bottke, William F.; Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2010)
- The Astronomical Journal, Volume 139, Issue 3, pp. 994-1014.
- http://iopscience.iop.org/1538-3881/139/3/994/
- Finding the trigger to Iapetus' odd global albedo pattern. Dynamics of dust from Saturn's irregular satellites
- Tamayo, Daniel; Burns, Joseph A.; Hamilton, Douglas P.; Hedman, Matthew M. (2011)
- Icarus, Volume 215, Issue 1, p. 260-278.
- http://www.sciencedirect.com/science/article/pii/S0019103511002442
- http://arxiv.org/pdf/1106.1893v1.pdf
- Irregular satellites of Jupiter. capture configurations of binary-asteroids
- Gaspar, H. S.; Winter, O. C.; Vieira Neto, E. (2011)
- Monthly Notices of the Royal Astronomical Society, Volume 415, Issue 3, pp. 1999-2008.
- http://mnras.oxfordjournals.org/content/415/3/1999
- http://arxiv.org/pdf/1002.2392v1.pdf
- On collisional capture rates of irregular satellites around the gas-giant planets and the minimum mass of the solar nebula
- Koch, F. Elliott; Hansen, Bradley M. S. (2011)
- Monthly Notices of the Royal Astronomical Society, Volume 416, Issue 2, pp. 1274-1283.
- http://mnras.oxfordjournals.org/content/416/2/1274
- http://arxiv.org/pdf/1104.2663v2.pdf
- Reassessing the origin of Triton
- Nogueira, E.; Brasser, R.; Gomes, R. (2011)
- Icarus, Volume 214, Issue 1, p. 113-130.
- http://www.sciencedirect.com/science/article/pii/S0019103511001679
- http://arxiv.org/pdf/1105.1179v1.pdf
- Capture of irregular satellites via binary planetesimal exchange reactions in migrating planetary systems
- Quillen, Alice C.; Hasan, Imran; Moore, Alex (2012)
- Monthly Notices of the Royal Astronomical Society, Volume 425, Issue 4, pp. 2507-2518.
- http://mnras.oxfordjournals.org/content/425/4/2507
- http://arxiv.org/pdf/1112.0577.pdf
- Temporary capture of planetesimals by a giant planet and implication for the origin of irregular satellites
- Suetsugu, Ryo; Ohtsuki, Keiji (2013)
- Monthly Notices of the Royal Astronomical Society, Volume 431, Issue 2, p.1709-1718
- http://mnras.oxfordjournals.org/content/431/2/1709
- Capture of Planetesimals by Gas Drag from Circumplanetary Disks
- Fujita, Tetsuya; Ohtsuki, Keiji; Tanigawa, Takayuki; Suetsugu, Ryo (2013)
- The Astronomical Journal, Volume 146, Issue 6, article id. 140, 13 pp.
- iopscience.iop.org/article/10.1088/0004-6256/146/6/140
- Black rain. The burial of the Galilean satellites in irregular satellite debris
- Bottke, William F.; Vokrouhlický, David; Nesvorný, David; Moore, Jeffrey M. (2013)
- Icarus, Volume 223, Issue 2, p. 775-795.
- http://www.sciencedirect.com/science/article/pii/S0019103513000158
- Chaotic dust dynamics and implications for the hemispherical color asymmetries of the Uranian satellites
- Tamayo, Daniel; Burns, Joseph A.; Hamilton, Douglas P. (2013)
- Icarus, Volume 226, Issue 1, p. 655-662.
- http://www.sciencedirect.com/science/article/pii/S0019103513002741
- http://arxiv.org/pdf/1306.3973v1.pdf
- Irregular satellites of Jupiter. three-dimensional study of binary-asteroid captures
- Gaspar, H. S.; Winter, O. C.; Vieira Neto, E. (2013)
- Monthly Notices of the Royal Astronomical Society, Volume 433, Issue 1, p.36-46
- http://mnras.oxfordjournals.org/content/433/1/36
- Capture of Irregular Satellites at Jupiter
- Nesvorny, D.; Vokrouhlicky, D.; Deienno, R. (2014)
- The Astrophysical Journal, Volume 784, Number 1, article id. 22
- http://iopscience.iop.org/0004-637X/784/1/22
- http://arxiv.org/pdf/1401.0253v1.pdf
- The 3 μm Spectrum of Jupiter's Irregular Satellite Himalia
- Brown, M. E.; Rhoden, A. R. (2014)
- The Astrophysical Journal Letters, Volume 793, Issue 2, article id. L44, 3 pp
- http://iopscience.iop.org/article/10.1088/2041-8205/793/2/L44/meta
- https://arxiv.org/pdf/1409.1261
- Orbital Characteristics of Planetesimals Captured by Circumplanetary Gas Disks
- Suetsugu, Ryo; Ohtsuki, Keiji; Fujita, Tetsuya (2016)
- The Astronomical Journal, Volume 151, Issue 6, article id. 140, 13 pp.
- http://iopscience.iop.org/article/10.3847/0004-6256/151/6/140
- http://arxiv.org/pdf/1604.08371v1.pdf
- Capture of Planetesimals by Waning Circumplanetary Gas Disks
- Suetsugu, Ryo; Ohtsuki, Keiji (2016)
- The Astrophysical Journal, Volume 820, Issue 2, article id. 128, 18 pp.
- http://iopscience.iop.org/article/10.3847/0004-637X/820/2/128
- http://arxiv.org/pdf/1604.08373v1.pdf
Kuiper Belt
editReview Articles
edit- Origin and Evolution of the Kuiper Belt
- Dones, Luke (1997)
- From Stardust to Planetesimals. Symposium held as part of the 108th Annual meeting of the ASP held at Santa Clara, California 24-26 June 1996. ASP Conference Series, Vol. 122, 1997, ed. Yvonne J. Pendleton; A. G. G. M. Tielens (with the editorial assistance of Maureen L. Savage)., p.347
- http://articles.adsabs.harvard.edu/full/1997ASPC..122..347D
- Dynamics of the Kuiper Belt
- Malhotra, R.; Duncan, M. J.; Levison, H. F. (2000)
- Protostars and Planets IV (Book - Tucson: University of Arizona Press; eds Mannings, V., Boss, A.P., Russell, S. S.), p. 1231
- http://arxiv.org/pdf/astro-ph/9901155v2.pdf
- Kuiper Belt Objects. Relics from the Accretion Disk of the Sun
- Luu, Jane X.; Jewitt, David C. (2002)
- Annual Review of Astronomy and Astrophysics, Vol. 40, p. 63-101.
- http://www.annualreviews.org/doi/abs/10.1146/annurev.astro.40.060401.093818?journalCode=astro
- The kuiper belt and the primordial evolution of the solar system
- Morbidelli, A.; Brown, M. E. (2004)
- Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver (eds.), University of Arizona Press, Tucson, 745 pp., p.175-191
- http://www.lpi.usra.edu/books/CometsII/7004.pdf
- Interaction of planetesimals with the giant planets and the shaping of the trans-Neptunian belt
- Levison, Harold F.; Morbidelli, Alessandro (2005)
- Dynamics of Populations of Planetary Systems, Proceedings of IAU Colloquium #197,p.303-316
- http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?2005dpps.conf..303L
- Origin and Dynamical Evolution of Comets and their Reservoirs
- Morbidelli, Alessandro (2005)
- http://arxiv.org/pdf/astro-ph/0512256v1.pdf
- A Brief History of Transneptunian Space
- Chiang, E.; Lithwick, Y.; Murray-Clay, R.; Buie, M.; Grundy, W.; Holman, M. (2007)
- Protostars and Planets V, B. Reipurth, D. Jewitt, and K. Keil (eds.), University of Arizona Press, Tucson, 951 pp., 2007., p.895-911
- http://arxiv.org/abs/astro-ph/0601654
- The Dynamical Structure of the Kuiper Belt and Its Primordial Origin
- Morbidelli, A.; Levison, H. F.; Gomes, R. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.275-292.
- http://arxiv.org/pdf/astro-ph/0703558v1.pdf
Pre-Discovery
edit- The New Planet Pluto
- Leonard, F. C. (1930)
- Astronomical Society of the Pacific Leaflets, Vol. 1, No. 30, p.121
- http://articles.adsabs.harvard.edu/full/seri/ASPL./0001//0000124.000.html
- The origin and evolution of the Solar System
- Edgeworth, K. E. (1949)
- Monthly Notices of the Royal Astronomical Society, Vol. vol. 109, p. 600-609.
- http://adsabs.harvard.edu/full/1949MNRAS.109..600E
- The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin
- Oort, J. H. (1950)
- Bulletin of the Astronomical Institutes of the Netherlands, vol. 11, p. 91-110.
- http://articles.adsabs.harvard.edu/full/1950BAN....11...91O
- On the Origin of the Solar System
- Kuiper, Gerard P. (1951)
- Astrophysics: Proceedings of a topical symposium, commemorating the 50th anniversary of the Yerkes Observatory and half a century of progress in astrophysics, New York: McGraw-Hill, 1951, edited by Hynek, J.A., p.357
- http://books.google.com/books/about/Astrophysics.html?id=C-NMXwAACAAJ
- Proceedings of the National Academy of Sciences of the United States of America, Volume 37, Issue 1, pp. 1-14
- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063291/pdf/pnas01562-0011.pdf
- Evidence for a Comet Belt beyond Neptune
- Whipple, Fred L. (1964)
- Proceedings of the National Academy of Sciences of the United States of America, Volume 51, Issue 5, pp. 711-718.
- http://www.pnas.org/content/51/5/711
- On the existence of a comet belt beyond Neptune
- Fernandez, J. A. (1980)
- Monthly Notices of the Royal Astronomical Society, vol. 192, Aug. 1980, p. 481-491.
- http://articles.adsabs.harvard.edu/full/1980MNRAS.192..481F
- The origin of short-period comets
- Duncan, M.; Quinn, T.; Tremaine, S. (1988)
- Astrophysical Journal, Part 2 - Letters, vol. 328, May 15, 1988, p. L69-L73.
- http://articles.adsabs.harvard.edu/full/1988ApJ...328L..69D
- The Early Development of Ideas Concerning the Transneptunian Region
- Davies, J. K.; McFarland, J.; Bailey, M. E.; Marsden, B. G.; Ip, W.-H. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.11-23
- Discovery of the candidate Kuiper belt object 1992 QB1
- Jewitt, D.; Luu, J. (1993)
- Nature (ISSN 0028-0836), vol. 362, no. 6422, p. 730-732.
- http://www.nature.com/nature/journal/v362/n6422/abs/362730a0.html
Resonant Objects
edit- Capture into resonance - an extension of the use of adiabatic invariants
- Henrard, J. (1982)
- Celestial Mechanics, vol. 27, May 1982, p. 3-22.
- http://link.springer.com/article/10.1007%2FBF01228946
- http://articles.adsabs.harvard.edu/full/1982CeMec..27....3H
- A second fundamental model for resonance
- Henrard, J.; Lamaitre, A. (1983)
- Celestial Mechanics, vol. 30, p. 197-218.
- http://link.springer.com/article/10.1007%2FBF01234306
- http://articles.adsabs.harvard.edu/full/1983CeMec..30..197H
- The Resonant Structure of the Kuiper Belt and the Dynamics of the First Five Trans-Neptunian Objects
- Morbidelli, A.; Thomas, F.; Moons, M. (1995)
- Icarus, Volume 118, Issue 2, p. 322-340.
- http://www.sciencedirect.com/science/article/pii/S0019103585711943
- The Phase Space Structure Near Neptune Resonances in the Kuiper Belt
- Malhotra, Renu (1996)
- Astronomical Journal v.111, p.504
- http://articles.adsabs.harvard.edu//full/1996AJ....111..504M
- The Origin of Pluto's Orbit. Implications for the Solar System Beyond Neptune
- Malhotra, Renu (1995)
- Astronomical Journal v.110, p.420
- http://articles.adsabs.harvard.edu/full/1995AJ....110..420M
- The Plutinos
- Jewitt, D.; Luu, J. (1996)
- Completing the Inventory of the Solar System, Astronomical Society of the Pacific Conference Proceedings, volume 107, T.W. Rettig and J.M. Hahn, Eds., pp. 255-258.
- http://articles.adsabs.harvard.edu/full/1996ASPC..107..255J
- Mean Motion Resonances in the Trans-neptunian Region. I. The 2/3 Resonance with Neptune
- Nesvorný, D.; Roig, F. (2000)
- Icarus, Volume 148, Issue 1, pp. 282-300.
- http://www.sciencedirect.com/science/article/pii/S0019103500964807
- Mean Motion Resonances in the Transneptunian Region. Part II. The 1/2, 3/4, and Weaker Resonances
- Nesvorný, D.; Roig, F. (2001)
- Icarus, Volume 150, Issue 1, pp. 104-123.
- http://www.sciencedirect.com/science/article/pii/S0019103500965680
- On the Plutinos and Twotinos of the Kuiper Belt
- Chiang, E. I.; Jordan, A. B. (2002)
- The Astronomical Journal, Volume 124, Issue 6, pp. 3430-3444.
- http://iopscience.iop.org/1538-3881/124/6/3430
- http://arxiv.org/pdf/astro-ph/0210440v1.pdf
- Resonant and Secular Families of the Kuiper Belt
- Chiang, E. I.; Lovering, J. R.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Meech, K. J. (2003)
- Earth, Moon, and Planets, v. 92, Issue 1, p. 49-62.
- http://link.springer.com/article/10.1023%2FB%3AMOON.0000031924.20073.d0
- http://arxiv.org/pdf/astro-ph/0309250v1.pdf
- A Possible Correlation between the Gaseous Drag Strength and Resonant Planetesimals in Planetary Systems
- Jiang, Ing-Guey; Yeh, Li-Chin (2007)
- The Astrophysical Journal, Volume 656, Issue 1, pp. 534-544.
- http://iopscience.iop.org/0004-637X/656/1/534/
- http://arxiv.org/pdf/astro-ph/0610668v1.pdf
- Exploring the 7/4 mean motion resonance—I. Dynamical evolution of classical transneptunian objects
- Lykawka, Patryk Sofia; Mukai, Tadashi (2005)
- Planetary and Space Science, Volume 53, Issue 11, p. 1175-1187.
- http://www.sciencedirect.com/science/article/pii/S0032063305001169
- Exploring the 7/4 mean motion resonance—II. Scattering evolutionary paths and resonance sticking====
- Lykawka, Patryk Sofia; Mukai, Tadashi (2006)
- Planetary and Space Science, Volume 54, Issue 1, p. 87-100.
- http://www.sciencedirect.com/science/article/pii/S0032063305001984
- A Signature of Planetary Migration. The Origin of Asymmetric Capture in the 2/1 Resonance
- Murray-Clay, Ruth A.; Chiang, Eugene I. (2005)
- The Astrophysical Journal, Volume 619, Issue 1, pp. 623-638.
- http://iopscience.iop.org/0004-637X/619/1/623/
- http://arxiv.org/pdf/astro-ph/0410086v1.pdf
- Reducing the probability of capture into resonance
- Quillen, Alice C. (2006)
- Monthly Notices of the Royal Astronomical Society, Volume 365, Issue 4, pp. 1367-1382.
- http://mnras.oxfordjournals.org/content/365/4/1367
- http://arxiv.org/pdf/astro-ph/0507477v2.pdf
- Resonance Dynamics in the Kuiper Belt
- Gladman, Brett; Kavelaars, J.J. (2008)
- La Physique au Canada, Vol. 64, No. 4 p. 207-214.
- Chaotic Diffusion of Resonant Kuiper Belt Objects
- Tiscareno, Matthew S.; Malhotra, Renu (2009)
- The Astronomical Journal, Volume 138, Issue 3, pp. 827-837.
- http://iopscience.iop.org/1538-3881/138/3/827/
- http://arxiv.org/pdf/0807.2835v3.pdf
- The Resonant Trans-Neptunian Populations
- Gladman, B.; Lawler, S. M.; Petit, J.-M.; Kavelaars, J.; Jones, R. L.; Parker, J. Wm.; Van Laerhoven, C.; Nicholson, P.; Rousselot, P.; Bieryla, A.; Ashby, M. L. N. (2012)
- The Astronomical Journal, Volume 144, Issue 1, article id. 23, 24 pp.
- http://iopscience.iop.org/article/10.1088/0004-6256/144/1/23
- http://arxiv.org/pdf/1205.7065v1
- Effect of a gaseous transition disc on planetesimal driven migration
- Reyes-Ruiz, Mauricio; Aceves, H.; Chavez, C. E.; Torres, S. (2013)
- American Astronomical Society, DPS meeting #45, #415.05
- http://adsabs.harvard.edu/abs/2013DPS....4541505R
- Modeling the Migration of Neptune and the Corresponding Resonant Captures
- Yeh, Li-Chin; Jiang, Ing-Guey; Zhou, Li-Yong (2013)
- Proceedings of the 11th Asian-Pacific Regional IAU Meeting (APRIM2011), NARIT Conference Series Volume I
- http://arxiv.org/pdf/1308.1156v1.pdf
- The 5/1 Neptune Resonance as Probed by CFEPS. Dynamics and Population
- Pike, R. E.; Kavelaars, J. J.; Petit, J. M.; Gladman, B. J.; Alexandersen, M.; Volk, K.; Shankman, C. J. (2015)
- The Astronomical Journal, Volume 149, Issue 6, article id. 202, 11 pp.
- http://iopscience.iop.org/article/10.1088/0004-6256/149/6/202
- http://arxiv.org/pdf/1504.08041v1.pdf
Scattered Objects
edit- A new dynamical class of object in the outer Solar System
- Luu, Jane; Marsden, Brian G.; Jewitt, David; Trujillo, Chadwick A.; Hergenrother, Carl W.; Chen, Jun; Offutt, Warren B. (1997)
- Nature, Volume 387, Issue 6633, pp. 573-575.
- http://www.nature.com/nature/journal/v387/n6633/full/387573a0.html
- Origin and orbital distribution of the trans-Neptunian scattered disc
- Morbidelli, A.; Emel'yanenko, V. V.; Levison, H. F. (2004)
- Monthly Notices of the Royal Astronomical Society, Volume 355, Issue 3, pp. 935-940.
- http://mnras.oxfordjournals.org/content/355/3/935
- http://articles.adsabs.harvard.edu/full/2004MNRAS.355..935M
- Neptune's Migration into a Stirred-Up Kuiper Belt. A Detailed Comparison of Simulations to Observations
- Hahn, Joseph M.; Malhotra, Renu (2005)
- The Astronomical Journal, Volume 130, Issue 5, pp. 2392-2414.
- http://iopscience.iop.org/1538-3881/130/5/2392/
- http://arxiv.org/pdf/astro-ph/0507319v1.pdf
- The Scattered Disk. Origins, Dynamics, and End States
- Gomes, R. S.; Fernandez, J. A.; Gallardo, T.; Brunini, A. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.259-273
- Resonance sticking in the scattered disk
- Lykawka, Patryk Sofia; Mukai, Tadashi (2007)
- Icarus, Volume 192, Issue 1, p. 238-247.
- http://www.sciencedirect.com/science/article/pii/S0019103507002746
- http://arxiv.org/ftp/arxiv/papers/0707/0707.4301.pdf
- Origin of scattered disk resonant TNOs. Evidence for an ancient excited Kuiper belt of 50 AU radius
- Lykawka, Patryk Sofia; Mukai, Tadashi (2007)
- Icarus, Volume 186, Issue 2, p. 331-341.
- http://www.sciencedirect.com/science/article/pii/S0019103506003502
- The scattered disk and hot belt, two sides of the same coin?
- Kavelaars, J. J.; Petit, J.-M.; Gladman, B.; Jone, R. L.; Parker, J.; Taylor, M. (2011)
- EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France. p.1318
- http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-1318.pdf
- Tracking Neptune’s Migration History through High-perihelion Resonant Trans-Neptunian Objects
- Kaib, Nathan A.; Sheppard, Scott S. (2016)
- The Astronomical Journal, Volume 152, Issue 5, article id. 133, 15 pp.
- http://iopscience.iop.org/article/10.3847/0004-6256/152/5/133/meta
- https://arxiv.org/pdf/1607.01777
- The Orbital Distribution of Trans-Neptunian Objects Beyond 50 au
- Nesvorný, David; Vokrouhlický, David; Roig, Fernando (2016)
- The Astrophysical Journal Letters, Volume 827, Issue 2, article id. L35, 5 pp.
- http://iopscience.iop.org/article/10.3847/2041-8205/827/2/L35/meta
- https://arxiv.org/pdf/1607.08279
- The Structure of the Distant Kuiper Belt in a Nice Model Scenario
- Pike, R. E.; Lawler, S.; Brasser, R.; Shankman, C. J.; Alexandersen, M.; Kavelaars, J. J. (2017)
- The Astronomical Journal, Volume 153, Issue 3, article id. 127, 10 pp.
- http://iopscience.iop.org/article/10.3847/1538-3881/aa5be9/meta
- https://arxiv.org/pdf/1701.07041
- Details of Resonant Structures Within a Nice Model Kuiper Belt Predictions for High-Perihelion TNO Detections
- Pike, R. E.; Lawler, S. M. (2017)
- eprint arXiv:1709.03699
- https://arxiv.org/pdf/1709.03699
- Origin and Evolution of Short-period Comets
- Nesvorný, David; Vokrouhlický, David; Dones, Luke; Levison, Harold F.; Kaib, Nathan; Morbidelli, Alessandro (2017)
- The Astrophysical Journal, Volume 845, Issue 1, article id. 27, 25 pp.
- http://iopscience.iop.org/article/10.3847/1538-4357/aa7cf6/meta
- https://arxiv.org/pdf/1706.07447
Extended Scattered Disk
edit- Evidence for an Extended Scattered Disk
- Gladman, B.; Holman, M.; Grav, T.; Kavelaars, J.; Nicholson, P.; Aksnes, K.; Petit, J-M. (2002)
- Icarus, Volume 157, Issue 2, p. 269-279
- http://www.sciencedirect.com/science/article/pii/S0019103502968600
- http://arxiv.org/pdf/astro-ph/0103435v1.pdf
- A new class of trans-Neptunian objects in high-eccentricity orbits
- Emel'yanenko, V. V.; Asher, D. J.; Bailey, M. E. (2002)
- Monthly Notice of the Royal Astronomical Society, Volume 338, Issue 2, pp. 443-451.
- http://mnras.oxfordjournals.org/content/338/2/443
- Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12 (Sedna)
- Morbidelli, Alessandro; Levison, Harold F. (2004)
- The Astronomical Journal, Volume 128, Issue 5, pp. 2564-2576.
- http://iopscience.iop.org/1538-3881/128/5/2564/
- http://arxiv.org/pdf/astro-ph/0403358v1.pdf
- On The Origin of The High-Perihelion Scattered Disk. The Role of The Kozai Mechanism And Mean Motion Resonances
- Gomes, Rodney S.; Gallardo, Tabaré; Fernández, Julio A.; Brunini, Adrián (2005)
- Celestial Mechanics and Dynamical Astronomy, Volume 91, Issue 1-2, pp. 109-129
- http://link.springer.com/article/10.1007%2Fs10569-004-4623-y
- Production of the Extended Scattered Disk by Rogue Planets
- Gladman, Brett; Chan, Collin (2006)
- The Astrophysical Journal, Volume 643, Issue 2, pp. L135-L138.
- http://iopscience.iop.org/1538-4357/643/2/L135/
- A distant planetary-mass solar companion may have produced distant detached objects
- Gomes, Rodney S.; Matese, John J.; Lissauer, Jack J. (2006)
- Icarus, Volume 184, Issue 2, p. 589-601.
- http://www.sciencedirect.com/science/article/pii/S001910350600193X
- The origin of TNO 2004 XR 190 as a primordial scattered object
- Gomes, Rodney S. (2011)
- Icarus, Volume 215, Issue 2, p. 661-668.
- http://www.sciencedirect.com/science/article/pii/S0019103511003113
- Sedna and the Oort Cloud around a migrating Sun
- Kaib, Nathan A.; Roškar, Rok; Quinn, Thomas (2011)
- Icarus, Volume 215, Issue 2, p. 491-507
- http://www.sciencedirect.com/science/article/pii/S0019103511003101
- http://arxiv.org/pdf/1108.1570v1.pdf
- Dynamical formation of detached trans-Neptunian objects close to the 2/5 and 1/3 mean motion resonances with Neptune
- Brasil, P. I. O.; Gomes, R. S.; Soares, J. S.
- Astronomy & Astrophysics, Volume 564, id.A44, 12 pp.
- http://www.aanda.org/articles/aa/abs/2014/04/aa22041-13/aa22041-13.html
- http://arxiv.org/pdf/1405.3249v1.pdf
- Survey of Kozai dynamics beyond Neptune
- Gallardo, Tabaré; Hugo, Gastón; Pais, Pablo (2012)
- Icarus, Volume 220, Issue 2, p. 392-403. (Icarus Homepage)
- http://www.sciencedirect.com/science/article/pii/S0019103512002072
- http://arxiv.org/pdf/1205.4935v1.pdf
- Comparison of forming mechanisms for Sedna-type objects through an observational simulator
- Soares, J. S.; Gomes, R. S. (2013)
- Astronomy & Astrophysics, Volume 553, id.A110, 10 pp.
- http://www.aanda.org/articles/aa/abs/2013/05/aa19840-12/aa19840-12.html
- A Sedna-like body with a perihelion of 80 astronomical units
- Trujillo, Chadwick A.; Sheppard, Scott S. (2014)
- Nature, Volume 507, Issue 7493, pp. 471-474.
- http://www.nature.com/nature/journal/v507/n7493/full/nature13156.html
- Reassessing the formation of the Inner Oort cloud in an embedded star cluster II. Probing the inner edge
- Brasser, R.; Schwamb, M. E. (2015)
- Monthly Notices of the Royal Astronomical Society, Volume 446, Issue 4, p.3788-3796
- http://mnras.oxfordjournals.org/content/446/4/3788
- http://arxiv.org/pdf/1411.1844v1.pdf
- How Sedna and family were captured in a close encounter with a solar sibling
- Jilkova, Lucie; Portegies Zwart, Simon; Pijloo, Tjibaria; Hammer, Michael (2015)
- Monthly Notices of the Royal Astronomical Society, Volume 453, Issue 3, p.3157-3162
- http://mnras.oxfordjournals.org/content/453/3/3157
- http://arxiv.org/pdf/1506.03105v1.pdf
- Study and application of the resonant secular dynamics beyond Neptune
- Saillenfest, Melaine; Fouchard, Marc; Tommei, Giacomo; Valsecchi, Giovanni B. (2017)
- Celestial Mechanics and Dynamical Astronomy, Volume 127, Issue 4, pp.477-504
- https://link.springer.com/article/10.1007%2Fs10569-016-9735-7
- https://arxiv.org/pdf/1611.04480
Oort Cloud
edit- The Formation of the Oort Cloud and the Primitive Galactic Environment
- Fernández, Julio A. (1997)
- Icarus, Volume 129, Issue 1, pp. 106-119.
- http://www.sciencedirect.com/science/article/pii/S0019103597957547
- The scattered disk population as a source of Oort cloud comets. evaluation of its current and past role in populating the Oort cloud
- Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrián (2004)
- Icarus, Volume 172, Issue 2, p. 372-381.
- http://www.sciencedirect.com/science/article/pii/S0019103504002210
- Oort cloud formation and dynamics
- Dones, L.; Weissman, P. R.; Levison, H. F.; Duncan, M. J. (2004)
- Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver (eds.), University of Arizona Press, Tucson, 745 pp., p.153-174
- http://www.lpi.usra.edu/books/CometsII/7031.pdf
- Discovery of a Candidate Inner Oort Cloud Planetoid
- Brown, Michael E.; Trujillo, Chadwick; Rabinowitz, David (2004)
- The Astrophysical Journal, Volume 617, Issue 1, pp. 645-649.
- http://iopscience.iop.org/0004-637X/617/1/645/
- http://arxiv.org/pdf/astro-ph/0404456v1.pdf
- Stellar encounters as the origin of distant Solar System objects in highly eccentric orbits
- Kenyon, Scott J.; Bromley, Benjamin C. (2004)
- Nature, Volume 432, Issue 7017, pp. 598-602.
- http://www.nature.com/nature/journal/v432/n7017/full/nature03136.html
- http://arxiv.org/pdf/astro-ph/0412030v1.pdf
- Embedded star clusters and the formation of the Oort Cloud
- Brasser, R.; Duncan, M. J.; Levison, H. F. (2006)
- Icarus, Volume 184, Issue 1, p. 59-82.
- http://www.sciencedirect.com/science/article/pii/S0019103506001230
- The occurrence of high-order resonances and Kozai mechanism in the scattered disk
- Gallardo, Tabaré (2006)
- Icarus, Volume 181, Issue 1, p. 205-217.
- http://www.sciencedirect.com/science/article/pii/S0019103505004689
- The formation of the Oort cloud in open cluster environments
- Kaib, Nathan A.; Quinn, Thomas (2008)
- Icarus, Volume 197, Issue 1, p. 221-238.
- http://www.sciencedirect.com/science/article/pii/S0019103508001395
- http://arxiv.org/pdf/0707.4515v3.pdf
- The Role of the Galaxy in the Dynamical Evolution of Transneptunian Objects
- Duncan, M. J.; Brasser, R.; Dones, L.; Levison, H. F. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.315-331
- Reassessing the formation of the inner Oort cloud in an embedded star cluster
- Brasser, R.; Duncan, M. J.; Levison, H. F.; Schwamb, M. E.; Brown, M. E. (2012)
- Icarus, Volume 217, Issue 1, p. 1-19.
- http://www.sciencedirect.com/science/article/pii/S0019103511004052
- http://arxiv.org/pdf/1110.5114v1.pdf
- An Oort cloud origin for the high-inclination, high-perihelion Centaurs
- Brasser, R.; Schwamb, M. E.; Lykawka, P. S.; Gomes, R. S. (2012)
- Monthly Notices of the Royal Astronomical Society, Volume 420, Issue 4, pp. 3396-3402.
- http://mnras.oxfordjournals.org/content/420/4/3396
- http://arxiv.org/pdf/1111.7037v1.pdf
- Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System
- Brasser, R.; Morbidelli, A. (2013)
- Icarus, Volume 225, Issue 1, p. 40-49.
- http://www.sciencedirect.com/science/article/pii/S001910351300122X
- http://arxiv.org/pdf/1303.3098v1.pdf
- Re-assessing the formation of the inner Oort cloud in an embedded star cluster - II. Probing the inner edge
- Brasser, R.; Schwamb, M. E. (2015)
- Monthly Notices of the Royal Astronomical Society, Volume 446, Issue 4, p.3788-3796
- https://academic.oup.com/mnras/article-abstract/446/4/3788/2892865/
- https://arxiv.org/pdf/1411.1844
- Inner solar system material discovered in the Oort cloud
- Meech, Karen J.; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Berdyugina, Svetlana; Keane, Jacqueline V.; :Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J. (2016)
- Science Advances 2, 4, id. e1600038
- http://advances.sciencemag.org/content/2/4/e1600038.full
Cold Classical Objects
edit- Two distinct populations of Kuiper-belt objects
- Tegler, S. C.; Romanishin, W. (1998)
- Nature, vol. 392, p. 49
- http://www.nature.com/nature/journal/v392/n6671/full/392049a0.html
- Extremely red Kuiper-belt objects in near-circular orbits beyond 40 AU
- Tegler, S. C.; Romanishin, W. (2000)
- Nature, Volume 407, Issue 6807, pp. 979-981
- http://www.nature.com/nature/journal/v407/n6807/full/407979a0.html
- On the Size Dependence of the Inclination Distribution of the Main Kuiper Belt
- Levison, Harold F.; Stern, S. Alan (2001)
- The Astronomical Journal, Volume 121, Issue 3, pp. 1730-1735.
- http://iopscience.iop.org/1538-3881/121/3/1730/
- http://arxiv.org/pdf/astro-ph/0011325v1.pdf
- A Correlation between Inclination and Color in the Classical Kuiper Belt
- Trujillo, Chadwick A.; Brown, Michael E. (2002)
- The Astrophysical Journal, Volume 566, Issue 2, pp. L125-L128.
- http://iopscience.iop.org/1538-4357/566/2/L125/
- http://arxiv.org/pdf/astro-ph/0201040v1.pdf
- Detection of Six Trans-Neptunian Binaries with NICMOS. A High Fraction of Binaries in the Cold Classical Disk
- Stephens, Denise C.; Noll, Keith S. (2006)
- The Astronomical Journal, Volume 131, Issue 2, pp. 1142-1148.
- http://iopscience.iop.org/1538-3881/131/2/1142/
- http://arxiv.org/pdf/astro-ph/0510130v1.pdf
- Evidence for two populations of classical transneptunian objects. The strong inclination dependence of classical binaries
- Noll, Keith S.; Grundy, William M.; Stephens, Denise C.; Levison, Harold F.; Kern, Susan D. (2007)
- Icarus, Volume 194, Issue 2, p. 758-768.
- http://www.sciencedirect.com/science/article/pii/S0019103507005854
- http://arxiv.org/pdf/0711.1545v2.pdf
- Color-Inclination Relation of the Classical Kuiper Belt Objects
- Peixinho, Nuno; Lacerda, Pedro; Jewitt, David (2008)
- The Astronomical Journal, Volume 136, Issue 5, pp. 1837-1845.
- http://iopscience.iop.org/1538-3881/136/5/1837/
- http://arxiv.org/pdf/0808.3025v1.pdf
- The Color Differences of Kuiper Belt Objects in Resonance with Neptune
- Sheppard, Scott S. (2012)
- The Astronomical Journal, Volume 144, Issue 6, article id. 169, 14 pp.
- http://iopscience.iop.org/1538-3881/144/6/169/
- http://arxiv.org/pdf/1210.0537v1.pdf
- Destruction of Binary Minor Planets During Neptune Scattering
- Parker, Alex H.; Kavelaars, J. J. (2010)
- The Astrophysical Journal Letters, Volume 722, Issue 2, pp. L204-L208.
- http://iopscience.iop.org/2041-8205/722/2/L204/
- http://arxiv.org/pdf/1009.3495v1.pdf
- Retention of a Primordial Cold Classical Kuiper Belt in an Instability-Driven Model of Solar System Formation
- Batygin, Konstantin; Brown, Michael E.; Fraser, Wesley C. (2011)
- The Astrophysical Journal, Volume 738, Issue 1, article id. 13, 8 pp.
- http://iopscience.iop.org/0004-637X/738/1/13/
- http://arxiv.org/pdf/1106.0937v2.pdf
- The Canada-France Ecliptic Plane Survey—Full Data Release. The Orbital Structure of the Kuiper Belt
- Petit, J.-M.; Kavelaars, J. J.; Gladman, B. J.; Jones, R. L.; Parker, J. Wm.; Van Laerhoven, C.; Nicholson, P.; Mars, G.; Rousselot, P.; Mousis, O.; Marsden, B.; Bieryla, A.; Taylor, M.; Ashby, M. L. N.; Benavidez, P.; Campo Bagatin, A.; Bernabeu, G. (2011)
- The Astronomical Journal, Volume 142, Issue 4, article id. 131, 24 pp.
- http://iopscience.iop.org/1538-3881/142/4/131
- http://arxiv.org/pdf/1108.4836.pdf
- Reality and origin of the Kernel of the classical Kuiper Belt
- Petit, J.-M.; Gladman, B.; Kavelaars, J. J. (2012)
- EGU General Assembly 2012, held 22-27 April, 2012 in Vienna, Austria., p.9750
- http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-722.pdf
- http://meetingorganizer.copernicus.org/EGU2012/EGU2012-9750.pdf
- Neptune on Tiptoes. Dynamical Histories that Preserve the Cold Classical Kuiper Belt
- Wolff, Schuyler; Dawson, Rebekah I.; Murray-Clay, Ruth A. (2012)
- The Astrophysical Journal, Volume 746, Issue 2, article id. 171, 16 pp.
- http://iopscience.iop.org/0004-637X/746/2/171/
- http://arxiv.org/pdf/1112.1954.pdf
- Revisited Study On The Survival Regions Of Classical Kbos
- Da Silva Gaspar, Helton; Nesvorný, D.; Morbidelli, A. (2012)
- American Astronomical Society, DPS meeting #44, #210.11
- http://adsabs.harvard.edu/abs/2012DPS....4421011D
- The bimodal colors of Centaurs and small Kuiper belt objects
- Peixinho, N.; Delsanti, A.; Guilbert-Lepoutre, A.; Gafeira, R.; Lacerda, P. (2012)
- Astronomy & Astrophysics, Volume 546, id.A86, 12 pp.
- http://www.aanda.org/articles/aa/abs/2012/10/aa19057-12/aa19057-12.html
- http://arxiv.org/pdf/1206.3153v1.pdf
- Origin of the peculiar eccentricity distribution of the inner cold Kuiper belt
- Morbidelli, A.; Gaspar, H. S.; Nesvorny, D. (2014)
- Icarus, Volume 232, p. 81-87
- http://www.sciencedirect.com/science/article/pii/S0019103514000037
- http://arxiv.org/pdf/1312.7536v1.pdf
- The Albedo-Color Diversity of Transneptunian Objects
- Lacerda, Pedro; Fornasier, Sonia; Lellouch, Emmanuel; Kiss, Csaba; Vilenius, Esa; Santos-Sanz, Pablo; Rengel, Miriam; Müller, Thomas; Stansberry, John; Duffard, René; Delsanti, Audrey; Guilbert-Lepoutre, Aurélie (2014)
- The Astrophysical Journal Letters, Volume 793, Issue 1, article id. L2, 6 pp.
- http://iopscience.iop.org/2041-8205/793/1/L2/
- http://arxiv.org/pdf/1406.1420v2.pdf
- Jumping Neptune Can Explain the Kuiper Belt Kernel
- Nesvorny, David (2015)
- The Astronomical Journal, Volume 150, Issue 3, article id. 68, 14 pp.
- http://iopscience.iop.org/1538-3881/150/3/68/
- http://arxiv.org/pdf/1506.06019v1.pdf
- Forming the Cold Classical Kuiper Belt in a light Disk
- Shannon, Andrew; Wu, Yanqin; Lithwick, Yoram (2015)
- eprint arXiv:1510.01323
- http://arxiv.org/pdf/1510.01323v1
Inclinations
edit- Pluto's Inclination Excitation by Resonance Sweeping
- Malhotra, R. (1998)
- 29th Annual Lunar and Planetary Science Conference, March 16-20, 1998, Houston, TX, abstract no. 1476.
- http://www.lpi.usra.edu/meetings/LPSC98/pdf/1476.pdf
- Planetary Migration and Plutino Orbital Inclinations
- Gomes, R. S. (2000)
- The Astronomical Journal, Volume 120, Issue 5, pp. 2695-2707.
- http://iopscience.iop.org/1538-3881/120/5/2695/
- The Inclination Distribution of the Kuiper Belt
- Brown, Michael E. (2001)
- The Astronomical Journal, Volume 121, Issue 5, pp. 2804-2814.
- http://iopscience.iop.org/1538-3881/121/5/2804/
- The origin of the Kuiper Belt high-inclination population
- Gomes, Rodney S. (2003)
- Icarus, Volume 161, Issue 2, p. 404-418.
- http://www.sciencedirect.com/science/article/pii/S0019103502000568
- Inclination Mixing in the Classical Kuiper Belt
- Volk, Kathryn; Malhotra, Renu (2011)
- The Astrophysical Journal, Volume 736, Issue 1, article id. 11, 14 pp.
- http://iopscience.iop.org/0004-637X/736/1/11/
- http://arxiv.org/pdf/1104.4967v2.pdf
- Mind the gap. investigating why the physical and orbital properties of 'hot' and 'cold' Classical KBOs mismatch
- Peixinho, N.; Miloni, O. (2011)
- EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France, p.1011
- http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-1011-1.pdf
- Dynamical Implantation of Objects in the Kuiper Belt
- Brasil, P. I. O.; Nesvorný, D.; Gomes, R. S. (2014)
- The Astronomical Journal, Volume 148, Issue 3, article id. 56, 9 pp.
- http://iopscience.iop.org/1538-3881/148/3/56/
- The Evidence for Slow Migration of Neptune from the Inclination Distribution of Kuiper Belt Objects
- Nesvorny, David (2015)
- The Astronomical Journal, Volume 150, Issue 3, article id. 73, 18 pp.
- http://iopscience.iop.org/1538-3881/150/3/73/
- http://arxiv.org/pdf/1504.06021v1.pdf
Secular Resonances
edit- Sweeping Secular Resonances in the Kuiper Belt Caused by Depletion of the Solar Nebula
- Nagasawa, Makiko; Ida, Shigeru (2000)
- The Astronomical Journal, Volume 120, Issue 6, pp. 3311-3322.
- http://iopscience.iop.org/1538-3881/120/6/3311/
- Secular Resonance Sweeping in a Self-gravitating Planetesimal Disk, with Application to the Kuiper Belt
- Hahn, J. M.; Ward, W. R. (2002)
- 33rd Annual Lunar and Planetary Science Conference, March 11-15, 2002, Houston, Texas, abstract no.1930
- http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1930.pdf
- The secular evolution of the Kuiper belt after a close stellar encounter
- Punzo, D.; Capuzzo-Dolcetta, R.; Portegies Zwart, S. (2014)
- Monthly Notices of the Royal Astronomical Society, Volume 444, Issue 3, p.2808-2819
- http://mnras.oxfordjournals.org/content/444/3/2808
- http://arxiv.org/pdf/1403.6633v3.pdf
Missing Mass
edit- On the number of planets in the outer solar system - Evidence of a substantial population of 1000-km bodies
- Stern, S. A. (1991)
- Icarus, vol. 90, April 1991, p. 271-281.
- http://www.sciencedirect.com/science/article/pii/0019103591901064
- On the Number of Planetary Bodies Created in the Outer Solar System
- Abstracts of the Lunar and Planetary Science Conference, volume 22, page 1331
- http://articles.adsabs.harvard.edu/full/1991LPI....22.1331S
- Collisional Time Scales in the Kuiper Disk and Their Implications
- Stern, S. Alan (1995)
- Astronomical Journal v.110, p.856
- http://articles.adsabs.harvard.edu/full/1995AJ....110..856S
- On the Collisional Environment, Accretion Time Scales, and Architecture of the Massive, Primordial Kuiper Belt
- Stern, S. Alan (1996)
- Astronomical Journal v.112, p.1203
- http://articles.adsabs.harvard.edu/full/1996AJ....112.1203S
- Accretion in the Edgeworth-Kuiper Belt. Forming 100-1000 KM Radius Bodies at 30 AU and Beyond
- Stern, S. Alan; Colwell, Joshua E. (1997)
- The Astronomical Journal, v. 114, p. 841.
- http://adsabs.harvard.edu/full/1997AJ....114..841S
- Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30-50 AU Kuiper Gap
- Stern, S. Alan; Colwell, Joshua E. (1997)
- Astrophysical Journal v.490, p.879
- http://iopscience.iop.org/0004-637X/490/2/879/
- Implications Regarding the Energetics Of the Collisional Formation of Kuiper Belt Satellites
- Stern, S. Alan (2002)
- The Astronomical Journal, Volume 124, Issue 4, pp. 2300-2304.
- http://iopscience.iop.org/1538-3881/124/4/2300/
- http://arxiv.org/html/astro-ph/0206104v1
Extra Planets
edit- An Outer Planet Beyond Pluto and the Origin of the Trans-Neptunian Belt Architecture
- Lykawka, Patryk S.; Mukai, Tadashi (2008)
- The Astronomical Journal, Volume 135, Issue 4, pp. 1161-1200.
- http://iopscience.iop.org/1538-3881/135/4/1161/
- http://arxiv.org/ftp/arxiv/papers/0712/0712.2198.pdf
- Neptune migration model with one extra planet
- Yeh, Lun-Wen; Chang, Hsiang-Kuang (2009)
- Icarus, Volume 204, Issue 1, p. 330-345.
- http://www.sciencedirect.com/science/article/pii/S0019103509002498
- http://arxiv.org/pdf/0908.1729v1.pdf
- Trans-Neptunian Objects as Natural Probes to the Unknown Solar System
- Lykawka, P. S. (2012)
- Monographs on Environment, Earth and Planets, Volume 1, Issue 3, p. 121-186.
- http://www.terrapub.co.jp/onlinemonographs/meep/abstract/01/0103.html
- http://arxiv.org/ftp/arxiv/papers/1212/1212.6124.pdf
- Signatures Of A Putative Planetary Mass Solar Companion On The Orbital Distribution Of Tno's And Centaurs
- Gomes, Rodney S.; Soares, J. S. (2012)
- American Astronomical Society, DDA meeting #43, #5.01
- http://adsabs.harvard.edu/abs/2012DDA....43.0501G
- On the Origin of Planets at Very Wide Orbits from the Recapture of Free Floating Planets
- Perets, Hagai B.; Kouwenhoven, M. B. N. (2012)
- The Astrophysical Journal, Volume 750, Issue 1, article id. 83, 8 pp.
- http://iopscience.iop.org/0004-637X/750/1/83/
- http://arxiv.org/pdf/1202.2362v2.pdf
- Extreme trans-Neptunian objects and the Kozai mechanism. signalling the presence of trans-Plutonian planets
- de la Fuente Marcos, C.; de la Fuente Marcos, R. (2014)
- Monthly Notices of the Royal Astronomical Society: Letters, Volume 443, Issue 1, p.L59-L63
- http://mnrasl.oxfordjournals.org/content/443/1/L59
- http://arxiv.org/pdf/1406.0715v2.pdf
- Planet X revamped after the discovery of the Sedna-like object 2012 VP113?
- Iorio, L. (2014)
- Monthly Notices of the Royal Astronomical Society: Letters, Volume 444, Issue 1, p.L78-L79
- http://mnrasl.oxfordjournals.org/content/444/1/L78
- http://arxiv.org/pdf/1404.0258v2.pdf
- The observation of large semi-major axis Centaurs. Testing for the signature of a planetary-mass solar companion
- Gomes, Rodney S.; Soares, Jean S.; Brasser, Ramon (2015)
- Icarus, Volume 258, p. 37-49.
- http://www.sciencedirect.com/science/article/pii/S001910351500264X
- The Curiously Warped Mean Plane of the Kuiper Belt
- Volk, Kathryn; Malhotra, Renu (2017)
- The Astronomical Journal, Volume 154, Issue 2, article id. 62, 16 pp.
- http://iopscience.iop.org/article/10.3847/1538-3881/aa79ff/meta
- https://arxiv.org/pdf/1704.02444
Scattered Embryos
edit- Neptune Scattered Planetesimals Could Have Sculpted the Primordial Edgeworth-Kuiper Belt
- Morbidelli, Alessandro; Valsecchi, Giovanni B. (1997)
- Icarus, Volume 128, Issue 2, pp. 464-468.
- http://www.sciencedirect.com/science/article/pii/S0019103597957456
- Large Scattered Planetesimals and the Excitation of the Small Body Belts
- Petit, Jean-Marc; Morbidelli, Alessandro; Valsecchi, Giovanni B. (1999)
- Icarus, Volume 141, Issue 2, pp. 367-387.
- http://www.sciencedirect.com/science/article/pii/S0019103599961663
Neptune Migration
edit- Orbital Evolution of Planets Embedded in a Planetesimal Disk
- Hahn, Joseph M.; Malhotra, Renu (1999)
- The Astronomical Journal, Volume 117, Issue 6, pp. 3041-3053.
- http://iopscience.iop.org/1538-3881/117/6/3041/
- http://arxiv.org/pdf/astro-ph/9902370v1.pdf
- Orbital Migration of Neptune and Orbital Distribution of Trans-Neptunian Objects
- Ida, Shigeru; Bryden, Geoffrey; Lin, D. N. C.; Tanaka, Hidekazu (2000)
- The Astrophysical Journal, Volume 534, Issue 1, pp. 428-445.
- http://iopscience.iop.org/0004-637X/534/1/428/
- The formation of the Kuiper belt by the outward transport of bodies during Neptune's migration
- Levison, Harold F.; Morbidelli, Alessandro (2003)
- Nature, Volume 426, Issue 6965, pp. 419-421.
- http://www.nature.com/nature/journal/v426/n6965/full/nature02120.html
- Planetary migration in a planetesimal disk. why did Neptune stop at 30 AU?
- Gomes, Rodney S.; Morbidelli, Alessandro; Levison, Harold F. (2004)
- Icarus, Volume 170, Issue 2, p. 492-507.
- http://www.sciencedirect.com/science/article/pii/S0019103504000971
- Formation of the Kuiper Belt by Long Time-Scale Migration of Jovian Planets
- Li, Jian; Zhou, Li-Yong; Sun, Yi-Sui (2006)
- Chinese Journal of Astronomy and Astrophysics, Volume 6, Issue 5, pp. 588-596.
- http://iopscience.iop.org/1009-9271/6/5/11/
- http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?2006ChJAA...6..588L
- Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune
- Levison, Harold F.; Morbidelli, Alessandro; Van Laerhoven, Christa; Gomes, Rodney; Tsiganis, Kleomenis (2008)
- Icarus, Volume 196, Issue 1, p. 258-273.
- http://www.sciencedirect.com/science/article/pii/S0019103507006094
- http://arxiv.org/pdf/0712.0553v1.pdf
- Evolution of Jovian planets in a self-gravitating planetesimal disk
- Li, J.; Zhou, L.-Y.; Sun, Y.-S. (2011)
- Astronomy & Astrophysics, Volume 528, id.A86, 7 pp.
- http://www.aanda.org/articles/aa/abs/2011/04/aa15601-10/aa15601-10.html
- Using Kuiper Belt Binaries to Constrain Neptune's Migration History
- Murray-Clay, Ruth A.; Schlichting, Hilke E. (2011)
- The Astrophysical Journal, Volume 730, Issue 2, article id. 132, 14 pp.
- http://iopscience.iop.org/0004-637X/730/2/132/
- http://www.arxiv.org/pdf/1102.1430v1.pdf
- Resonant Transneptunian Binaries. Evidence for Slow Migration of Neptune
- Noll, Keith S.; Grundy, W. M.; Schlichting, H. E.; Murray-Clay, R. A.; Benecchi, S. D. (2012)
- American Astronomical Society, DPS meeting #44, #405.07
- http://www.lpi.usra.edu/meetings/acm2012/pdf/6461.pdf
- Neptune's Wild Days. Constraints from the Eccentricity Distribution of the Classical Kuiper Belt
- Dawson, Rebekah I.; Murray-Clay, Ruth (2012)
- The Astrophysical Journal, Volume 750, Issue 1, article id. 43, 29 pp.
- http://iopscience.iop.org/0004-637X/750/1/43/
- http://arxiv.org/pdf/1202.6060.pdf
Rough Migration
edit- Stochastic effects in the planet migration and orbital distribution of the Kuiper Belt
- Zhou, Li-Yong; Sun, Yi-Sui; Zhou, Ji-Lin; Zheng, Jia-Qing; Valtonen, Mauri (2002)
- Monthly Notice of the Royal Astronomical Society, Volume 336, Issue 2, pp. 520-526.
- http://mnras.oxfordjournals.org/content/336/2/520
- http://adsabs.harvard.edu/full/2002MNRAS.336..520Z
- Brownian Motion in Planetary Migration
- Murray-Clay, Ruth A.; Chiang, Eugene I. (2006)
- The Astrophysical Journal, Volume 651, Issue 2, pp. 1194-1208.
- http://iopscience.iop.org/0004-637X/651/2/1194/
- http://arxiv.org/pdf/astro-ph/0607203v1.pdf
- Neptune's Orbital Migration Was Grainy, Not Smooth
- Nesvorny, David; Vokrouhlicky, David (2016)
- The Astrophysical Journal, Volume 825, Issue 2, article id. 94, 18 pp.
- http://iopscience.iop.org/article/10.3847/0004-637X/825/2/94/meta
- http://arxiv.org/pdf/1602.06988v1.pdf
Dynamics
edit- The Dynamical Structure of the Kuiper Belt
- Duncan, Martin J.; Levison, Harold F.; Budd, Stuart Mark (1995)
- Astronomical Journal v.110, p.3073
- http://articles.adsabs.harvard.edu/full/1995AJ....110.3073D
- Long-Term Dynamics and the Orbital Inclinations of the Classical Kuiper Belt Objects
- Kuchner, Marc J.; Brown, Michael E.; Holman, Matthew (2002)
- The Astronomical Journal, Volume 124, Issue 2, pp. 1221-1230.
- http://iopscience.iop.org/1538-3881/124/2/1221/
- http://arxiv.org/pdf/astro-ph/0206260v1.pdf
- The Plane of the Kuiper Belt
- Brown, Michael E.; Pan, Margaret (2004)
- The Astronomical Journal, Volume 127, Issue 4, pp. 2418-2423.
- http://iopscience.iop.org/1538-3881/127/4/2418/
- Long term dynamical evolution and classification of classical TNOs
- Lykawka, Patryk Sofia; Mukai, Tadashi (2005)
- Earth, Moon, and Planets, Volume 97, Issue 1-2, pp. 107-126.
- http://link.springer.com/article/10.1007%2Fs11038-005-9056-4
- The Deep Ecliptic Survey. A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population
- Elliot, J. L.; Kern, S. D.; Clancy, K. B.; Gulbis, A. A. S.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Chiang, E. I.; Jordan, A. B.; Trilling, D. E.; Meech, K. J. (2005)
- The Astronomical Journal, Volume 129, Issue 2, pp. 1117-1162.
- http://iopscience.iop.org/1538-3881/129/2/1117/
- Dynamical classification of trans-neptunian objects. Probing their origin, evolution, and interrelation
- Lykawka, Patryk Sofia; Mukai, Tadashi (2007)
- Icarus, Volume 189, Issue 1, p. 213-232.
- http://www.sciencedirect.com/science/article/pii/S001910350700036X
Collisions
edit- Collisional Evolution of Edgeworth-Kuiper Belt Objects
- Davis, D. R.; Farinella, P. (1997)
- Icarus, Volume 125, Issue 1, pp. 50-60.
- http://www.sciencedirect.com/science/article/pii/S0019103596955955
- Accretion in the Early Kuiper Belt. I. Coagulation and Velocity Evolution
- Kenyon, Scott J.; Luu, Jane X. (1998)
- The Astronomical Journal, Volume 115, Issue 5, pp. 2136-2160.
- http://iopscience.iop.org/1538-3881/115/5/2136/
- http://arxiv.org/pdf/astro-ph/9804185v1.pdf
- Accretion in the Early Kuiper Belt. II. Fragmentation
- Kenyon, Scott J.; Luu, Jane X. (1999)
- The Astronomical Journal, Volume 118, Issue 2, pp. 1101-1119.
- http://iopscience.iop.org/1538-3881/118/2/1101/
- http://arxiv.org/pdf/astro-ph/9904115v1.pdf
- Accretion in the Early Outer Solar System
- Kenyon, Scott J.; Luu, Jane X. (1999)
- The Astrophysical Journal, Volume 526, Issue 1, pp. 465-470.
- http://iopscience.iop.org/0004-637X/526/1/465/
- http://arxiv.org/pdf/astro-ph/9906143v1.pdf
- Formation and Collisional Evolution of the Edgeworth-Kuiper Belt
- Farinella, P.; Davis, D. R.; Stern, S. A. (2000)
- Protostars and Planets IV (Book - Tucson: University of Arizona Press; eds Mannings, V., Boss, A.P., Russell, S. S.), p. 1255
- http://www.uapress.arizona.edu/onlinebks/PPIV/chap45.pdf
- Planet Formation in the Outer Solar System
- Kenyon, Scott J. (2002)
- The Publications of the Astronomical Society of the Pacific, Volume 114, Issue 793, pp. 265-283.
- http://www.jstor.org/stable/10.1086/339188
- http://arxiv.org/pdf/astro-ph/0112120v1.pdf
- Evidence for a Collisional Mechanism Affecting Kuiper Belt Object Colors
- Stern, S. Alan (2002)
- The Astronomical Journal, Volume 124, Issue 4, pp. 2297-2299.
- http://iopscience.iop.org/1538-3881/124/4/2297/
- http://arxiv.org/html/astro-ph/0206129v1
- Coupling dynamical and collisional evolution of small bodies. an application to the early ejection of planetesimals from the Jupiter-Saturn region
- Charnoz, Sébastien; Morbidelli, Alessandro (2003)
- Icarus, Volume 166, Issue 1, p. 141-156.
- http://www.sciencedirect.com/science/article/pii/S0019103503002136
- Shaping the Kuiper belt size distribution by shattering large but strengthless bodies
- Pan, Margaret; Sari, Re'em (2005)
- Icarus, Volume 173, Issue 2, p. 342-348.
- http://www.sciencedirect.com/science/article/pii/S0019103504002994
- http://arxiv.org/pdf/astro-ph/0402138v1.pdf
- Collisional Evolution of the Primordial Trans-Neptunian Disk. Implications for Planetary Migration and the Current Size Distribution of TNOs
- O'Brien, D. P.; Morbidelli, A.; Bottke, W. F. (2005)
- American Astronomical Society, DPS meeting #37, #29.14; Bulletin of the American Astronomical Society, Vol. 37, p.676
- http://adsabs.harvard.edu/abs/2005DPS....37.2914O
- Collisional Evolution of a Massive Planetesimal Disk During Slow Migration of the Outer Planets
- Weidenschilling, S. J. (2007)
- 38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII), held March 12-16, 2007 in League City, Texas. LPI Contribution No. 1338, p.2107
- http://www.lpi.usra.edu/meetings/lpsc2007/pdf/2107.pdf
- Coupling dynamical and collisional evolution of small bodies. II. Forming the Kuiper belt, the Scattered Disk and the Oort Cloud
- Charnoz, Sébastien; Morbidelli, Alessandro (2007)
- Icarus, Volume 188, Issue 2, p. 468-480.
- http://www.sciencedirect.com/science/article/pii/S001910350600443X
- http://arxiv.org/ftp/astro-ph/papers/0609/0609807.pdf
- Formation and Collisional Evolution of Kuiper Belt Objects
- Kenyon, S. J.; Bromley, B. C.; O'Brien, D. P.; Davis, D. R. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.293-313
- http://arxiv.org/pdf/0704.0259v1.pdf
- Physical Effects of Collisions in the Kuiper Belt
- Leinhardt, Z. M.; Stewart, S. T.; Schultz, P. H. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.195-211
- http://arxiv.org/pdf/0705.3943v1.pdf
- Variations on Debris Disks. Icy Planet Formation at 30-150 AU for 1-3 Msolar Main-Sequence Stars
- Kenyon, Scott J.; Bromley, Benjamin C. (2008)
- The Astrophysical Journal Supplement Series, Volume 179, Issue 2, pp. 451-483.
- http://iopscience.iop.org/0067-0049/179/2/451/
- http://arxiv.org/pdf/0807.1134v1.pdf
- Neptune Trojans and Plutinos, colors, sizes, dynamics, and their possible collisions
- Almeida, A. J. C.; Peixinho, N.; Correia, A. C. M. (2009)
- Astronomy and Astrophysics, Volume 508, Issue 2, 2009, pp.1021-1030
- http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...508.1021AFUL
- http://arxiv.org/pdf/0910.0865v3.pdf
- Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans
- Morbidelli, Alessandro; Levison, Harold F.; Bottke, William; Dones, Luke; Nesvorny, David (2009)
- Icarus, Volume 202, Issue 1, p. 310–315.
- http://www.sciencedirect.com/science/article/pii/S0019103509001134
- http://arxiv.org/pdf/0903.0923v1.pdf
- The history of the Solar system's debris disc. observable properties of the Kuiper belt
- Booth, Mark; Wyatt, Mark C.; Morbidelli, Alessandro; Moro-Martín, Amaya; Levison, Harold F. (2009)
- Monthly Notices of the Royal Astronomical Society, Volume 399, Issue 1, pp. 385-398.
- http://mnras.oxfordjournals.org/content/399/1/385
- http://arxiv.org/pdf/0906.3755v1.pdf
- Variations on Debris Disks. II. Icy Planet Formation as a Function of the Bulk Properties and Initial Sizes of Planetesimals
- Kenyon, Scott J.; Bromley, Benjamin C. (2010)
- The Astrophysical Journal Supplement, Volume 188, Issue 1, pp. 242-279.
- http://iopscience.iop.org/0067-0049/188/1/242/
- http://arxiv.org/pdf/0911.4129v2.pdf
- Planetesimals in Debris Disks of Sun-like Stars
- Shannon, Andrew; Wu, Yanqin (2011)
- The Astrophysical Journal, Volume 739, Issue 1, article id. 36, 10 pp.
- http://iopscience.iop.org/0004-637X/739/1/36/
- http://arxiv.org/pdf/1103.3209v1.pdf
- Runaway Growth During Planet Formation. Explaining the Size Distribution of Large Kuiper Belt Objects
- Schlichting, Hilke E.; Sari, Re'em (2011)
- The Astrophysical Journal, Volume 728, Issue 1, article id. 68, 12 pp.
- http://iopscience.iop.org/0004-637X/728/1/68/
- http://arxiv.org/pdf/1011.0201v1.pdf
- Coagulation Calculations of Icy Planet Formation at 15-150 AU. A Correlation between the Maximum Radius and the Slope of the Size Distribution for Trans-Neptunian Objects
- Kenyon, Scott J.; Bromley, Benjamin C. (2012)
- The Astronomical Journal, Volume 143, Issue 3, article id. 63, 21 pp.
- http://iopscience.iop.org/1538-3881/143/3/63/
- http://arxiv.org/pdf/1201.4395v1.pdf
- Collisional evolution of trans-Neptunian object populations in a Nice model environment
- Campo Bagatin, Adriano; Benavidez, Paula G. (2012)
- Monthly Notices of the Royal Astronomical Society, Volume 423, Issue 2, pp. 1254-1266.
- http://mnras.oxfordjournals.org/content/423/2/1254
- Statistics of encounters in the trans-Neptunian region
- Dell'Oro, A.; Campo Bagatin, A.; Benavidez, P. G.; Alemañ, R. A. (2013)
- Astronomy & Astrophysics, Volume 558, id.A95, 8 pp.
- http://www.aanda.org/articles/aa/abs/2013/10/aa21461-13/aa21461-13.html
Haumea
edit- A collisional family of icy objects in the Kuiper belt
- Brown, Michael E.; Barkume, Kristina M.; Ragozzine, Darin; Schaller, Emily L. (2007)
- Nature, Volume 446, Issue 7133, pp. 294-296.
- http://www.nature.com/nature/journal/v446/n7133/full/nature05619.html
- Candidate Members and Age Estimate of the Family of Kuiper Belt Object 2003 EL61
- Ragozzine, D.; Brown, M. E. (2007)
- The Astronomical Journal, Volume 134, Issue 6, pp. 2160-2167.
- http://iopscience.iop.org/1538-3881/134/6/2160/
- http://arxiv.org/pdf/0709.0328v1.pdf
- On a Scattered-Disk Origin for the 2003 EL61 Collisional FAMILY—AN Example of the Importance of Collisions on the Dynamics of Small Bodies
- Levison, Harold F.; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F. (2008)
- The Astronomical Journal, Volume 136, Issue 3, pp. 1079-1088.
- http://iopscience.iop.org/1538-3881/136/3/1079/
- http://arxiv.org/pdf/0809.0553v1.pdf
- The Youthful Appearance of the 2003 EL61 Collisional Family
- Rabinowitz, David L.; Schaefer, Bradley E.; Schaefer, Martha; Tourtellotte, Suzanne W. (2008)
- The Astronomical Journal, Volume 136, Issue 4, pp. 1502-1509.
- http://iopscience.iop.org/1538-3881/136/4/1502/
- http://arxiv.org/ftp/arxiv/papers/0804/0804.2864.pdf
- Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt
- Rabinowitz, David L.; Barkume, Kristina; Brown, Michael E.; Roe, Henry; Schwartz, Michael; Tourtellotte, Suzanne; Trujillo, Chad (2006)
- The Astrophysical Journal, Volume 639, Issue 2, pp. 1238-1251.
- http://iopscience.iop.org/0004-637X/639/2/1238/
- http://arxiv.org/ftp/astro-ph/papers/0509/0509401.pdf
- The Creation of Haumea's Collisional Family
- Schlichting, Hilke E.; Sari, Re'em (2009)
- The Astrophysical Journal, Volume 700, Issue 2, pp. 1242-1246.
- http://iopscience.iop.org/0004-637X/700/2/1242/
- http://arxiv.org/pdf/0906.3893v1.pdf
- The surface of (136108) Haumea (2003 EL{61}), the largest carbon-depleted object in the trans-Neptunian belt
- Pinilla-Alonso, N.; Brunetto, R.; Licandro, J.; Gil-Hutton, R.; Roush, T. L.; Strazzulla, G. (2009)
- Astronomy and Astrophysics, Volume 496, Issue 2, pp.547-556
- http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...496..547PFUL
- http://arxiv.org/pdf/0803.1080v1.pdf
- The Formation of the Collisional Family Around the Dwarf Planet Haumea
- Leinhardt, Zoë M.; Marcus, Robert A.; Stewart, Sarah T. (2010)
- The Astrophysical Journal, Volume 714, Issue 2, pp. 1789-1799.
- http://iopscience.iop.org/0004-637X/714/2/1789/
- http://arxiv.org/pdf/1003.5822v1.pdf
- Characterisation of candidate members of (136108) Haumea's family
- Snodgrass, C.; Carry, B.; Dumas, C.; Hainaut, O. (2010)
- Astronomy and Astrophysics, Volume 511, id.A72, 9 pp.
- http://www.aanda.org/articles/aa/abs/2010/03/aa13031-09/aa13031-09.html
- http://arxiv.org/pdf/0912.3171v1.pdf
- Characterisation of candidate members of (136108) Haumea's family. II. Follow-up observations
- Carry, B.; Snodgrass, C.; Lacerda, P.; Hainaut, O.; Dumas, C. (20120
- Astronomy & Astrophysics, Volume 544, id.A137, 7 pp.
- http://www.aanda.org/articles/aa/abs/2012/08/aa19044-12/aa19044-12.html
- http://arxiv.org/pdf/1206.7069v2.pdf
- Rotational fission of trans-Neptunian objects, the case of Haumea
- Ortiz, J. L.; Thirouin, A.; Campo Bagatin, A.; Duffard, R.; Licandro, J.; Richardson, D. C.; Santos-Sanz, P.; Morales, N.; Benavidez, P. G. (2012)
- Monthly Notices of the Royal Astronomical Society, Volume 419, Issue 3, pp. 2315-2324.
- http://mnras.oxfordjournals.org/content/419/3/2315
- http://arxiv.org/pdf/1110.3637v1.pdf
- The effect of orbital evolution on the Haumea (2003 EL61) collisional family
- Volk, Kathryn; Malhotra, Renu (2012)
- Icarus, Volume 221, Issue 1, p. 106-115.
- http://www.sciencedirect.com/science/article/pii/S0019103512002898
- http://arxiv.org/pdf/1206.7069v2.pdf
- On the Dynamics and Origin of Haumea's Moons
- Cuk, Matija; Ragozzine, Darin; Nesvorný, David (2013)
- The Astronomical Journal, Volume 146, Issue 4, article id. 89, 13 pp.
- http://iopscience.iop.org/1538-3881/146/4/89/
- http://arxiv.org/pdf/1308.1990v1.pdf
- The Size and Shape of the Oblong Dwarf Planet Haumea
- Lockwood, Alexandra C.; Brown, Michael E.; Stansberry, John (2014)
- Earth, Moon, and Planets, Volume 111, Issue 3-4, pp. 127-137
- http://link.springer.com/article/10.1007%2Fs11038-014-9430-1
- http://arxiv.org/pdf/1402.4456v1.pdf
Hit and Run
edit- Hit-and-run planetary collisions
- Asphaug, Erik; Agnor, Craig B.; Williams, Quentin (2006)
- Nature, Volume 439, Issue 7073, pp. 155-160.
- http://www.nature.com/nature/journal/v439/n7073/full/nature04311.html
- Hit-and-Run as Planets Formed
- Taylor, G. J. (2006)
- Planetary Science Research Discoveries
- http://www.psrd.hawaii.edu/Nov06/hit-and-run.html
- Similar-sized collisions and the diversity of planets
- Asphaug, Erik (2010)
- Chemie der Erde - Geochemistry, vol. 70, issue 3, pp. 199-219
- http://www.sciencedirect.com/science/article/pii/S000928191000005X
- Collisions between Gravity-dominated Bodies. II. The Diversity of Impact Outcomes during the End Stage of Planet Formation
- Stewart, Sarah T.; Leinhardt, Zoë M. (2012)
- The Astrophysical Journal, Volume 751, Issue 1, article id. 32, 17 pp.
- http://iopscience.iop.org/0004-637X/751/1/32/
- http://arxiv.org/pdf/1109.4588v3.pdf
- Low-Velocity Collision, Inefficient Accretion, Hit-and-Run Disruption, and the Stripping of Protoplanetary Cores
- Reufer, A.; Asphaug, E.; Scott, E. R. D. (2013)
- 44th Lunar and Planetary Science Conference, held March 18-22, 2013 in The Woodlands, Texas. LPI Contribution No. 1719, p.3094
- http://www.lpi.usra.edu/meetings/lpsc2013/pdf/3094.pdf
Size Distribution
edit- The Structure of the Kuiper Belt. Size Distribution and Radial Extent
- Gladman, Brett; Kavelaars, J. J.; Petit, Jean-Marc; Morbidelli, Alessandro; Holman, Matthew J.; Loredo, T. (2001)
- The Astronomical Journal, Volume 122, Issue 2, pp. 1051-1066.
- http://iopscience.iop.org/1538-3881/122/2/1051/
- The Size Distribution of Kuiper Belt Objects
- Kenyon, Scott J.; Bromley, Benjamin C. (2004)
- The Astronomical Journal, Volume 128, Issue 4, pp. 1916-1926.
- http://iopscience.iop.org/1538-3881/128/4/1916/
- http://arxiv.org/pdf/astro-ph/0406556v1.pdf
- The Size Distribution of Trans-Neptunian Bodies
- Bernstein, G. M.; Trilling, D. E.; Allen, R. L.; Brown, M. E.; Holman, M.; Malhotra, R. (2004)
- The Astronomical Journal, Volume 128, Issue 3, pp. 1364-1390.
- http://iopscience.iop.org/1538-3881/128/3/1364/
- http://arxiv.org/pdf/astro-ph/0308467v3.pdf
- The Kuiper Belt luminosity function from mR = 22 to 25
- Petit, J.-M.; Holman, M. J.; Gladman, B. J.; Kavelaars, J. J.; Scholl, H.; Loredo, T. J. (2006)
- Monthly Notices of the Royal Astronomical Society, Volume 365, Issue 2, pp. 429-438.
- http://mnras.oxfordjournals.org/content/365/2/429
- http://articles.adsabs.harvard.edu/full/2006MNRAS.365..429P
- The Kuiper belt luminosity function from m= 21 to 26
- Fraser, Wesley C.; Kavelaars, J. J.; Holman, M. J.; Pritchet, C. J.; Gladman, B. J.; Grav, T.; Jones, R. L.; MacWilliams, J.; Petit, J.-M. (2008)
- Icarus, Volume 195, Issue 2, p. 827-843.
- http://www.sciencedirect.com/science/article/pii/S0019103508000705
- http://arxiv.org/pdf/0802.2285v1.pdf
- A SUBARU Archival Search for Faint Trans-Neptunian Objects
- Fuentes, Cesar I.; Holman, Matthew J. (2008)
- The Astronomical Journal, Volume 136, Issue 1, pp. 83-97.
- http://iopscience.iop.org/article/10.1088/0004-6256/136/1/83
- A derivation of the luminosity function of the Kuiper belt from a broken power-law size distribution
- Fraser, Wesley C.; Kavelaars, J. J. (2008)
- Icarus, Volume 198, Issue 2, p. 452-458.
- http://www.sciencedirect.com/science/article/pii/S0019103508003138
- http://arxiv.org/pdf/0809.0313v1.pdf
- Size Distribution of Multikilometer Transneptunian Objects
- Petit, J.-M.; Kavelaars, J. J.; Gladman, B.; Loredo, T. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.71-87
- The Size Distribution of Kuiper Belt Objects for D gsim 10 km
- Fraser, Wesley C.; Kavelaars, J. J. (2009)
- The Astronomical Journal, Volume 137, Issue 1, pp. 72-82.
- http://iopscience.iop.org/1538-3881/137/1/72/
- http://arxiv.org/pdf/0810.2296v1.pdf
- The Collisional Divot in the Kuiper Belt Size Distribution
- Fraser, Wesley C. (2009)
- The Astrophysical Journal, Volume 706, Issue 1, pp. 119-129.
- http://iopscience.iop.org/0004-637X/706/1/119/
- http://arxiv.org/pdf/0910.0246v1.pdf
- The trans-Neptunian object size distribution at small sizes
- Gil-Hutton, R.; Licandro, J.; Pinilla-Alonso, N.; Brunetto, R. (2009)
- Astronomy and Astrophysics, Volume 500, Issue 2, pp.909-916
- http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...500..909GFUL
- The Size Distribution of the Neptune Trojans and the Missing Intermediate-sized Planetesimals
- Sheppard, Scott S.; Trujillo, Chadwick A. (2010)
- The Astrophysical Journal Letters, Volume 723, Issue 2, pp. L233-L237.
- http://iopscience.iop.org/2041-8205/723/2/L233/
- http://arxiv.org/pdf/1009.5990v1.pdf
- The luminosity function of the hot and cold Kuiper belt populations
- Fraser, Wesley C.; Brown, Michael E.; Schwamb, Megan E. (2010)
- Icarus, Volume 210, Issue 2, p. 944-955.
- http://www.sciencedirect.com/science/article/pii/S0019103510003027
- http://arxiv.org/pdf/1008.1058v1.pdf
- A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects
- Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M. (2013)
- The Astrophysical Journal Letters, Volume 764, Issue 1, article id. L2, 6 pp.
- http://iopscience.iop.org/2041-8205/764/1/L2/
- http://arxiv.org/pdf/1210.4827v2.pdf
- Initial Planetesimal Sizes and the Size Distribution of Small Kuiper Belt Objects
- Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E. (2013)
- The Astronomical Journal, Volume 146, Issue 2, article id. 36, 7 pp.
- http://iopscience.iop.org/1538-3881/146/2/36/
- http://arxiv.org/pdf/1301.7433v2.pdf
- De-biased Populations of Kuiper Belt Objects from the Deep Ecliptic Survey
- Adams, E. R.; Gulbis, A. A. S.; Elliot, J. L.; Benecchi, S. D.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H. (2014)
- The Astronomical Journal, Volume 148, Issue 3, article id. 55, 17 pp.
- http://iopscience.iop.org/article/10.1088/0004-6256/148/3/55
- http://arxiv.org/pdf/1311.3250v1.pdf
- The Absolute Magnitude Distribution of Kuiper Belt Objects
- Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin (2014)
- The Astrophysical Journal, Volume 782, Issue 2, article id. 100
- http://iopscience.iop.org/0004-637X/782/2/100/
- http://arxiv.org/pdf/1401.2157v1.pdf
- The Differing Magnitude Distributions of the Two Jupiter Trojan Color Populations
- Wong, Ian; Brown, Michael E.; Emery, Joshua P. (2014)
- The Astronomical Journal, Volume 148, Issue 6, article id. 112, 11 pp.
- http://iopscience.iop.org/article/10.1088/0004-6256/148/6/112
- http://arxiv.org/pdf/1408.2485v2.pdf
- A carefully characterised and tracked Trans-Neptunian survey, the size-distribution of the Plutinos and the number of Neptunian Trojans
- Alexandersen, Mike; Gladman, Brett; Kavelaars, J. J.; Petit, Jean-Marc; Gwyn, Stephen; Shankman, Cory (2014)
- eprint arXiv:1411.7953
- http://arxiv.org/pdf/1411.7953v1
- OSSOS. II. A Sharp Transition in the Absolute Magnitude Distribution of the Kuiper Belt’s Scattering Population
- Shankman, C.; Kavelaars, JJ.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K. (2016)
- The Astronomical Journal, Volume 151, Issue 2, article id. 31, 11 pp. (2016)
- http://iopscience.iop.org/article/10.3847/0004-6256/151/2/31
- http://arxiv.org/pdf/1511.02896v2.pdf
Outer Edge
edit- Evidence for Early Stellar Encounters in the Orbital Distribution of Edgeworth-Kuiper Belt Objects
- Ida, Shigeru; Larwood, John; Burkert, Andreas (2000)
- The Astrophysical Journal, Volume 528, Issue 1, pp. 351-356.
- http://iopscience.iop.org/0004-637X/528/1/351
- The Edge of the Solar System
- Allen, R. L.; Bernstein, G. M.; Malhotra, R. (2001)
- The Astrophysical Journal, Volume 549, Issue 2, pp. L241-L244.
- http://iopscience.iop.org/1538-4357/549/2/L241/
- http://arxiv.org/pdf/astro-ph/0011037v1.pdf
- The Radial Distribution of the Kuiper Belt
- Trujillo, Chadwick A.; Brown, Michael E. (2001)
- The Astrophysical Journal, Volume 554, Issue 1, pp. L95-L98.
- http://iopscience.iop.org/1538-4357/554/1/L95/
- Observational Limits on a Distant Cold Kuiper Belt
- Allen, R. L.; Bernstein, G. M.; Malhotra, R. (2002)
- The Astronomical Journal, Volume 124, Issue 5, pp. 2949-2954.
- http://iopscience.iop.org/1538-3881/124/5/2949/
- http://arxiv.org/pdf/astro-ph/0209421v1.pdf
- The Effects of a Stellar Encounter on a Planetesimal Disk
- Kobayashi, Hiroshi; Ida, Shigeru (2001)
- Icarus, Volume 153, Issue 2, pp. 416-429.
- http://www.sciencedirect.com/science/article/pii/S0019103501967004
- http://arxiv.org/pdf/astro-ph/0107086v1.pdf
- The edge of the edgeworth-Kuiper Belt. stellar encounter, trans-Plutonian planet or outer limit of the primordial solar nebula?
- Melita, M. D.; Larwood, J.; Collander-Brown, S.; Fitzsimmons, A.; Williams, I. P.; Brunini, A. (2002)
- Proceedings of Asteroids, Comets, Meteors - ACM 2002. International Conference, 29 July - 2 August 2002, Berlin, Germany. Ed. Barbara Warmbein. ESA SP-500. Noordwijk, Netherlands: ESA Publications Division, 2002, p. 305 - 308
- http://articles.adsabs.harvard.edu/full/2002ESASP.500..305M
- Planetesimal Formation in Two Dimensions. Putting an Edge on the Solar System
- Weidenschilling, S. J. (2002)
- 34th Annual Lunar and Planetary Science Conference, March 17-21, 2003, League City, Texas, abstract no.1707
- http://www.lpi.usra.edu/meetings/lpsc2003/pdf/1707.pdf
- Sculpting the Kuiper Belt by a Stellar Encounter. Constraints from the Oort Cloud and Scattered Disk
- Levison, Harold F.; Morbidelli, Alessandro; Dones, Luke (2004)
- The Astronomical Journal, Volume 128, Issue 5, pp. 2553-2563.
- http://iopscience.iop.org/1538-3881/128/5/2553
- Dispersal of Disks Around Young Stars. Constraints on Kuiper Belt Formation
- Hollenbach, D.; Adams, F. C. (2004)
- Debris Disks and the Formation of Planets: A Symposium in Memory of Fred Gillett, ASP Conference Series, Vol. 324, Proceedings of the conference held 11-13 April, 2002 in Tucson Arizona. Edited by L. Caroff, L. J. Moon, D. Backman, and E. Praton. San Francisco: Astronomical Society of the Pacific, 2004., p.168
- http://articles.adsabs.harvard.edu/full/2004ASPC..324..168H
- A Method to Constrain the Size of the Protosolar Nebula
- Kretke, K. A.; Levison, H. F.; Buie, M. W.; Morbidelli, A. (2012)
- The Astronomical Journal, Volume 143, Issue 4, article id. 91, 10 pp.
- http://iopscience.iop.org/1538-3881/143/4/91/
- http://arxiv.org/pdf/1202.2343v1.pdf
Binaries
edit- Formation of Kuiper-belt binaries by dynamical friction and three-body encounters
- Goldreich, Peter; Lithwick, Yoram; Sari, Re'em (2002)
- Nature, Volume 420, Issue 6916, pp. 643-646.
- http://www.nature.com/nature/journal/v420/n6916/full/nature01227.html
- http://arxiv.org/pdf/astro-ph/0208490v1.pdf
- KBO binaries, how numerous were they?
- Petit, J.-M.; Mousis, O. (2004)
- Icarus, Volume 168, Issue 2, p. 409-419.
- http://www.sciencedirect.com/science/article/pii/S0019103503004330
- The formation of Kuiper-belt binaries through exchange reactions
- Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke (2004)
- Nature, Volume 427, Issue 6974, pp. 518-520.
- http://www.nature.com/nature/journal/v427/n6974/full/nature02323.html
- http://arxiv.org/pdf/astro-ph/0402328v1.pdf
- Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders
- Astakhov, Sergey A.; Lee, Ernestine A.; Farrelly, David (2005)
- Monthly Notices of the Royal Astronomical Society, Volume 360, Issue 2, pp. 401-415.
- http://mnras.oxfordjournals.org/content/360/2/401
- http://arxiv.org/pdf/astro-ph/0504060v1.pdf
- The Frequency of Binary Kuiper Belt Objects
- Kern, S. D.; Elliot, J. L. (2006)
- The Astrophysical Journal, Volume 643, Issue 1, pp. L57-L60.
- http://iopscience.iop.org/1538-4357/643/1/L57
- The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36
- Stansberry, J. A.; Grundy, W. M.; Margot, J. L.; Cruikshank, D. P.; Emery, J. P.; Rieke, G. H.; Trilling, D. E. (2006)
- The Astrophysical Journal, Volume 643, Issue 1, pp. 556-566.
- http://iopscience.iop.org/0004-637X/643/1/556/
- http://arxiv.org/pdf/astro-ph/0602316v1.pdf
- Satellites of the Largest Kuiper Belt Objects
- Brown, M. E.; van Dam, M. A.; Bouchez, A. H.; Le Mignant, D.; Campbell, R. D.; Chin, J. C. Y.; Conrad, A.; Hartman, S. K.; Johansson, E. M.; Lafon, R. E.; Rabinowitz, D. L.; Stomski, P. J., Jr.; Summers, D. M.; Trujillo, C. A.; Wizinowich, P. L. (2006)
- The Astrophysical Journal, Volume 639, Issue 1, pp. L43-L46.
- http://iopscience.iop.org/1538-4357/639/1/L43/
- http://arxiv.org/pdf/astro-ph/0510029v1.pdf
- Production of trans-Neptunian binaries through chaos-assisted capture
- Lee, Ernestine A.; Astakhov, Sergey A.; Farrelly, David (2007)
- Monthly Notices of the Royal Astronomical Society, Volume 379, Issue 1, pp. 229-246.
- http://mnras.oxfordjournals.org/content/379/1/229
- http://arxiv.org/pdf/0705.0475v1.pdf
- Binaries in the Kuiper Belt
- Noll, K. S.; Grundy, W. M.; Chiang, E. I.; Margot, J.-L.; Kern, S. D. (2008)
- The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.345-363
- http://arxiv.org/pdf/astro-ph/0703134v2.pdf
- Formation of Kuiper Belt Binaries
- Schlichting, Hilke E.; Sari, Re'em (2008)
- The Astrophysical Journal, Volume 673, Issue 2, pp. 1218-1224.
- http://iopscience.iop.org/0004-637X/673/2/1218/
- http://arxiv.org/pdf/0709.3107v2.pdf
- The Ratio of Retrograde to Prograde Orbits. A Test for Kuiper Belt Binary Formation Theories
- Schlichting, Hilke E.; Sari, Re'em (2008)
- The Astrophysical Journal, Volume 686, Issue 1, pp. 741-747.
- http://iopscience.iop.org/0004-637X/686/1/741
- http://arxiv.org/pdf/0803.0329v2.pdf
- Kuiper binary formation
- Nazzario, R. C.; Orr, K.; Covington, C.; Kagan, D.; Hyde, T. W. (2008)
- Advances in Space Research, Volume 40, Issue 2, p. 280-283.
- http://www.sciencedirect.com/science/article/pii/S0273117707003328
- http://arxiv.org/ftp/astro-ph/papers/0507/0507149.pdf
- The correlated colors of transneptunian binaries
- Benecchi, S. D.; Noll, K. S.; Grundy, W. M.; Buie, M. W.; Stephens, D. C.; Levison, H. F. (2009)
- Icarus, Volume 200, Issue 1, p. 292-303.
- http://www.sciencedirect.com/science/article/pii/S0019103508003904
- http://arxiv.org/ftp/arxiv/papers/0811/0811.2104.pdf
- Formation of Kuiper Belt Binaries by Gravitational Collapse
- Nesvorný, David; Youdin, Andrew N.; Richardson, Derek C. (2010)
- The Astronomical Journal, Volume 140, Issue 3, pp. 785-793.
- http://iopscience.iop.org/1538-3881/140/3/785
- http://arxiv.org/pdf/1007.1465v1.pdf
- (47171) 1999 TC 36, A transneptunian triple
- Benecchi, S. D.; Noll, K. S.; Grundy, W. M.; Levison, H. F. (2010)
- Icarus, Volume 207, Issue 2, p. 978-991.
- http://www.sciencedirect.com/science/article/pii/S0019103509005065
- http://arxiv.org/ftp/arxiv/papers/0912/0912.2074.pdf
- A Change in the Light Curve of Kuiper Belt Contact Binary (139775) 2001 QG298
- Lacerda, Pedro (2011)
- The Astronomical Journal, Volume 142, Issue 3, article id. 90, 8 pp.
- http://iopscience.iop.org/1538-3881/142/3/90/
- http://arxiv.org/pdf/1107.3507v1.pdf
- The Relative Sizes of Transneptunian Binaries. Evidence for Different Populations from a Homogeneous Data Set
- Noll, K.; Grundy, W.; Benecchi, S.; Levison, H. (2011)
- EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France p.1029
- http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-1029.pdf
- Characterization of Seven Ultra-wide Trans-Neptunian Binaries
- Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc; Jones, Lynne; Gladman, Brett; Parker, Joel (2011)
- The Astrophysical Journal, Volume 743, Issue 1, article id. 1.
- http://iopscience.iop.org/0004-637X/743/1/1/
- http://arxiv.org/pdf/1108.2505v2.pdf
- Observed Binary Fraction Sets Limits on the Extent of Collisional Grinding in the Kuiper Belt
- Nesvorný, David; Vokrouhlický, David; Bottke, William F.; Noll, Keith; Levison, Harold F.
- The Astronomical Journal, Volume 141, Issue 5, article id. 159, 11 pp. (2011)
- http://iopscience.iop.org/1538-3881/141/5/159/
- http://arxiv.org/pdf/1102.5706v1.pdf
- Collisional Evolution of Ultra-wide Trans-Neptunian Binaries
- Parker, Alex H.; Kavelaars, J. J. (2012)
- The Astrophysical Journal, Volume 744, Issue 2, article id. 139, 14 pp.
- http://iopscience.iop.org/0004-637X/744/2/139/
- http://arxiv.org/pdf/1111.2046v1.pdf
- The unusual Kuiper belt object 2003 SQ317
- Lacerda, Pedro; McNeill, Andrew; Peixinho, Nuno (2014)
- Monthly Notices of the Royal Astronomical Society, Volume 437, Issue 4, p.3824-3831
- http://mnras.oxfordjournals.org/content/437/4/3824
- http://arxiv.org/pdf/1309.1671v1.pdf
- All planetesimals born near the Kuiper belt formed as binaries
- Fraser, Wesley C.; Bannister, Michele T.; Pike, Rosemary E.; Marsset, Michael; Schwamb, Megan E.; Kavelaars, J. J.; Lacerda, Pedro; Nesvorný, David; Volk, Kathryn; Delsanti, Audrey; Benecchi, Susan; Lehner, Matthew J.; Noll, Keith; Gladman, Brett; Petit, Jean-Marc; Gwyn, Stephen; Chen, Ying-Tung; Wang, Shiang-Yu; Alexandersen, Mike; Burdullis, Todd; Sheppard, Scott; Trujillo, Chad (2017)
- Nature Astronomy, Volume 1, id. 0088
- http://www.nature.com/articles/s41550-017-0088
- https://arxiv.org/pdf/1705.00683.pdf
10/27/2013
editother stuff
editlatitude and longitude
edithttp://star-www.st-and.ac.uk/~fv/webnotes/chapt9a.htm
Review
editFormation, Orbital and Internal Evolutions of Young Planetary Systems http://adsabs.harvard.edu/doi/10.1007/s11214-016-0258-z
Earth and Terrestrial Planet Formation http://adsabs.harvard.edu/abs/2015etpf.book...49J
Terrestrial Planet Formation at Home and Abroad http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1312.1689
Giant Planet and Brown Dwarf Formation http://adsabs.harvard.edu/abs/2014prpl.conf..619C
https://astrobites.org/2015/08/18/giant-planets-from-far-out-there/
http://www.ast.cam.ac.uk/sites/default/files/talk_archive/Walsh_acrossR_talk.pdf
http://astro.physik.uni-due.de/~planets2016/Program_Abstracts.pdf
http://www.rccp.tsukuba.ac.jp/Astro/assets/doc/cab2016/batch2/ida.pdf
https://www.youtube.com/watch?v=JOJahGcNhvI 1:07:00
Close-in planetesimal formation by pile-up of drifting pebbles http://arxiv.org/abs/1607.05734
Making Planet Nine: Pebble Accretion at 250–750 AU in a Gravitationally Unstable Ring http://adsabs.harvard.edu/abs/2016ApJ...825...33K
Formation of giant planets’ cores by classical planetesimal accretion http://adsabs.harvard.edu/abs/2015DPS....4730906M
Giant planet formation via pebble accretion http://adsabs.harvard.edu/abs/2015arXiv151107583G
Rapid planetesimal formation in the inner protoplanetary disk http://journals.cambridge.org/download.php?file=%2FIAU%2FIAU9_S310%2FS1743921314008278a.pdf&code=e98dddfac65a327d5e74d9e8bd98cb77
Close-in planetesimal formation by pile-up of drifting pebbles http://adsabs.harvard.edu/abs/2016arXiv160705734D
Onset of oligarchic growth and implication for accretion histories of dwarf planets http://arxiv.org/abs/1608.00043
The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets http://arxiv.org/abs/1608.00573
Evolution of Protoplanetary Discs with Magnetically Driven Disc Winds http://arxiv.org/abs/1609.00437
Prompt planetesimal formation beyond the snow line http://arxiv.org/abs/1608.03592
Dust and gas density evolution at a radial pressure bump in protoplanetary disks http://arxiv.org/abs/1605.02744
Dust Coagulation in the Vicinity of a Gap-Opening Jupiter-Mass Planet http://arxiv.org/abs/1512.03945
Turbulent Thermal Diffusion: A Way to Concentrate Dust in Protoplanetary Discs http://arxiv.org/abs/1512.02538
Fossilized condensation lines in the Solar System protoplanetary disk http://arxiv.org/abs/1511.06556
From Planetesimals to Planets in Turbulent Protoplanetary Disks I. Onset of Runaway Growth http://arxiv.org/abs/1512.06968
Migration of accreting planets in radiative discs from dynamical torques http://arxiv.org/abs/1608.08756
Failed Growth at the Bouncing Barrier in Planetesimal Formation http://arxiv.org/abs/1609.00501
The role of pebble fragmentation in planetesimal formation I. Experimental study http://arxiv.org/abs/1609.06914
The role of pebble fragmentation in planetesimal formation II. Numerical simulations http://arxiv.org/abs/1609.07052
Jumping the gap: the formation conditions and mass function of `pebble-pile' planetesimals http://adsabs.harvard.edu/abs/2016MNRAS.456.2383H
Excess C/O and C/H in outer protoplanetary disk gas https://arxiv.org/abs/1610.07859
Challenges in Planet Formation https://arxiv.org/abs/1610.07202
The Spiral Wave Instability Induced by a Giant Planet: I. Particle Stirring in the Inner Regions of Protoplanetary Disks https://arxiv.org/abs/1610.08502
Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line https://arxiv.org/abs/1610.09643
Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the solar nebula https://arxiv.org/abs/1610.09670
The structure of dust aggregates in hierarchical coagulation https://arxiv.org/abs/1611.00167
FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets https://arxiv.org/abs/1611.01538
Initial mass function of planetesimals formed by the streaming instability https://arxiv.org/abs/1611.02285
Atmospheric Signatures of Giant Exoplanet Formation by Pebble Accretion https://arxiv.org/abs/1611.03083
Disentangling Hot Jupiters formation location from their chemical composition https://arxiv.org/abs/1611.03128
Study and application of the resonant secular dynamics beyond Neptune https://arxiv.org/abs/1611.04480
Rocky Planetesimal Formation via Fluffy Aggregates of Nanograins https://arxiv.org/abs/1611.03859
Why Is Mercury So Far from the Sun? http://aasnova.org/2016/08/16/why-is-mercury-so-far-from-the-sun/
Dirty Stars Make Good Solar System Hosts https://www.sciencedaily.com/releases/2009/10/091006122336.htm
Hold on to Your Moons! Ice, Atmospheres and the Grand Tack https://astrobites.org/2015/06/09/hold-on-to-your-moons-ice-atmospheres-and-the-grand-tack/
Concentrating small particles in protoplanetary disks through the streaming instability https://arxiv.org/abs/1611.07014
Eccentricity distribution in the main asteroid belt https://arxiv.org/abs/1611.05826
Influence of the Centaurs and TNOs on the main belt and its families https://arxiv.org/abs/1611.05731
Terrestrial Planet Formation from an Annulus https://arxiv.org/abs/1609.06639
Observational Signatures of a Massive Distant Planet on the Scattering Disk https://arxiv.org/abs/1605.06575
The Formation and Evolution of Ordinary Chondrite Parent Bodies https://arxiv.org/abs/1611.08734
Composition of Solar System Small Bodies https://arxiv.org/abs/1611.08731
Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals http://mnras.oxfordjournals.org/content/462/Suppl_1/S132
What is the meter size barrier? https://astrobites.org/2015/04/03/what-is-the-meter-size-barrier/
From dust to planetesimals: an improved model for collisional growth in protoplanetary disks https://arxiv.org/abs/1209.0013
http://archiv.ub.uni-heidelberg.de/volltextserver/9213/1/dissertation_frithjof_brauer.pdf
http://th.nao.ac.jp/MEMBER/hori/pdf/HORI_2012Dec3-5.pdf
http://www.castu.tsinghua.edu.cn/publish/cas/945/20140429143211718785639/PlanetFormation_Bai.pdf
Timing of the formation and migration of giant planets as constrained by CB chondrites http://advances.sciencemag.org/content/2/12/e1601658.full
Building Massive Compact Planetesimal Disks from the Accretion of Pebbles http://adsabs.harvard.edu/abs/2015ApJ...809...94M
Overcoming the Meter Barrier and The Formation of Systems with Tightly-packed Inner Planets (STIPs) http://adsabs.harvard.edu/abs/2014ApJ...792L..27B
The Spiral Wave Instability Induced by a Giant Planet. I. Particle Stirring in the Inner Regions of Protoplanetary Disks http://adsabs.harvard.edu/abs/2016ApJ...833..126B
Application of Gas Dynamical Friction for Planetesimals. I. Evolution of Single Planetesimals http://adsabs.harvard.edu/abs/2015ApJ...811...54G
Planetesimal formation near the snowline: in or out? http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1702.02151
Chondrule Accretion with a Growing Protoplanet https://arxiv.org/abs/1702.07989
The cool and distant formation of Mars https://arxiv.org/abs/1704.00184
Terrestrial planet formation: Dynamical shake-up and the low mass of Mars https://arxiv.org/abs/1703.10618
Saving super-Earths: Interplay between pebble accretion and type I migration https://arxiv.org/abs/1704.01962
Long term dynamics beyond Neptune: secular models to study the regular motions https://arxiv.org/abs/1611.04457
Making Terrestrial Planets: High Temperatures, FU Orionis Outbursts, Earth, and Planetary System Architectures https://arxiv.org/abs/1704.05517
DPS asteroid belt and hot Kuiper belt show a turnover to a shallow size distribution at sizes larger than D=300-500km, transition to a steeper slope assuming that the original planetesimals had D<100km and grew further by the process of pebble accretion, size distribution above D=100km is set by a combination of planetesimal collisions and the sweeping up of pebbles, final slopes are diagnostic of the collisionial rate and the initial total mass of the planetesimal population, size distribution for the largest asteroids and hot Kuiper belt objects are consistent with growth dominated by the accretion of pebbles, observed size distributions also places constraints on the dominant particle size, the level of midplane turbulence and nebular conditions at different orbital radii in the Solar nebula, findings hint that the asteroid belt largely formed close to the dissipation of the gas disc and that its final total mass was comparable to that of the Earth
streaming instabilities
editProtoplanetary Disk Turbulence Driven by the Streaming Instability: Nonlinear Saturation and Particle Concentration https://iopscience.iop.org/article/10.1086/516730/meta
Forming Planetesimals in Solar and Extrasolar Nebulae https://arxiv.org/abs/0909.2652
From Disks to Planets https://arxiv.org/abs/1206.0738
Dynamical evolution of planetary systems https://arxiv.org/abs/1106.4114
Recent Research
editPrompt Planetesimal Formation beyond the Snow Line
Close-in planetesimal formation by pile-up of drifting pebbles
Dust and gas density evolution at a radial pressure bump in protoplanetary disks
http://www.astro.washington.edu/courses/astro557/
An Overview of Inside-Out Planet Formation
https://en.wiki.x.io/wiki/Accretion_%28astrophysics%29
http://adsabs.harvard.edu/abs/2016arXiv160402952B
http://adsabs.harvard.edu/abs/2014prpl.conf..411T
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1402.1354
Brauer, F.; Henning, Th.; Dullemond, C. P
http://adsabs.harvard.edu/abs/2016ApJ...817..105K
http://arxiv.org/pdf/1603.03168v2.pdf
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1305.1890
http://adsabs.harvard.edu/abs/2010Icar..208..518C
http://adsabs.harvard.edu/abs/2016ApJ...818..200E
http://www.mpia.de/homes/ppvi/posters/2H017.pdf
http://mnras.oxfordjournals.org/content/422/2/1140.full
http://arxiv.org/pdf/1211.2095v3.pdf
http://arxiv.org/abs/1501.03101
http://adsabs.harvard.edu/abs/2008ApJ...679.1588O
http://adsabs.harvard.edu/abs/2011A%26A...529A..62J
http://arxiv.org/pdf/1211.2095v3.pdf
http://adsabs.harvard.edu/abs/2013A%26A...559A..62W
http://adsabs.harvard.edu/abs/2014ApJ...783L..36Y
http://adsabs.harvard.edu/abs/2009ApJ...702.1490W
https://dda.aas.org/meetings/2016/program.html
http://adsabs.harvard.edu/abs/2016DDA....4730301D
http://adsabs.harvard.edu/abs/2016DDA....4710204C
http://adsabs.harvard.edu/abs/2016DDA....4730003I
http://adsabs.harvard.edu/abs/2016DDA....4710104A
https://arxiv.org/abs/1203.2940
https://arxiv.org/abs/1410.3832
https://arxiv.org/abs/1511.07762
https://arxiv.org/abs/1501.03101
https://arxiv.org/abs/1604.02952
https://arxiv.org/abs/1402.1344
https://arxiv.org/abs/1505.02941
http://arxiv.org/abs/1311.5222
http://arxiv.org/abs/1402.1354
http://arxiv.org/abs/1112.2349
http://arxiv.org/abs/0907.0985
https://www.youtube.com/watch?v=UVlv0boyuYc
http://adsabs.harvard.edu/abs/2015Natur.522...45S
http://phys.org/news/2016-05-footprints-baby-planets-gas-disk.html
http://spaceref.com/asteroids/vesta-is-not-an-intact-protoplanet.html
http://www.mpia.de/homes/ppvi/posters/2H034.pdf
http://arxiv.org/pdf/1602.00622v2.pdf
http://arxiv.org/abs/1401.7490
http://arxiv.org/abs/1401.7490
http://arxiv.org/abs/1202.4887
http://arxiv.org/abs/1106.0152
http://arxiv.org/abs/0902.3579
http://www.hou.usra.edu/meetings/lpsc2016/pdf/2024.pdf
http://www.issibern.ch/teams/originsolsys/Vesta/Pdf/Consolmagno_et_al-2015-Icarus.pdf
http://arxiv.org/abs/1508.06990
http://arxiv.org/abs/1602.04303
http://arxiv.org/pdf/1407.3303v1.pdf
http://adsabs.harvard.edu/abs/2004A%26A...414..727V
http://online.kitp.ucsb.edu/online/evoplanets_c15/raymond/options.html
http://arxiv.org/abs/1603.07674
http://www.raa-journal.org/raa/index.php/raa/article/viewFile/1573/1835
http://arxiv.org/abs/1510.06848
http://arxiv.org/abs/1603.07674
http://arxiv.org/pdf/1205.4935v1.pdf
Simulations of Small Solid Accretion onto Planetesimals in the Presence of Gas https://arxiv.org/abs/1708.00450
planetary formation
edithttp://adsabs.harvard.edu/abs/2016arXiv160309506M
http://adsabs.harvard.edu/abs/2015ApJ...808...14M
http://adsabs.harvard.edu/abs/2014A%26A...567A.121D
http://adsabs.harvard.edu/abs/2010arXiv1012.5281M
http://adsabs.harvard.edu/abs/2014ApJ...795...65J
http://adsabs.harvard.edu/abs/2013A%26A...558A.109A
http://adsabs.harvard.edu/abs/2012A%26A...541A..97M
http://adsabs.harvard.edu/abs/2011A%26A...526A..63A
http://adsabs.harvard.edu/abs/2015MNRAS.448.1751I
http://adsabs.harvard.edu/abs/2015ApJ...811...41L
http://adsabs.harvard.edu/abs/2016ApJ...822...54D
http://adsabs.harvard.edu/abs/2015MNRAS.453.1471D
http://adsabs.harvard.edu/abs/2013MNRAS.431.3444C
http://adsabs.harvard.edu/abs/2013ApJ...775...53H
http://adsabs.harvard.edu/abs/2015MNRAS.448.1044H
http://adsabs.harvard.edu/abs/2012ApJ...751..158H
http://adsabs.harvard.edu/abs/2014MNRAS.440.3545H
http://adsabs.harvard.edu/abs/2014ApJ...797...95L
http://adsabs.harvard.edu/abs/2016ApJ...817...90L
http://arxiv.org/pdf/1602.07843v2.pdf
http://arxiv.org/abs/1606.02299
http://arxiv.org/pdf/1604.07558v1.pdf
https://www.youtube.com/watch?v=pi65Dkg7mXQ
https://www.youtube.com/watch?v=7dRLvSzDHo8
https://www.youtube.com/watch?v=6H04KIafek8
https://www.youtube.com/watch?v=Hj03S0SUfa4
https://www.youtube.com/watch?v=LmnDAQPHemc&feature=player_embedded
https://www.youtube.com/channel/UCU9iq3MZ5pjLR6OcKSMb0dw
https://www.youtube.com/channel/UCt7jPAnjUd118EmUAA-oI7g
https://www.youtube.com/watch?v=3XaZpnFJf0E&list=RDEVbu8bh7SWk&index=4
http://arxiv.org/pdf/1603.02630v1.pdf
http://www.tat.physik.uni-tuebingen.de/~kley/exo16/program.txt
https://www.lorentzcenter.nl/lc/web/2016/799/participants.php3?wsid=799&venue=Oort
Testing in Situ Assembly with the Kepler Planet Candidate Sample http://adsabs.harvard.edu/abs/2013ApJ...775...53H
Migration Then Assembly: Formation of Neptune-mass Planets inside 1 AU http://adsabs.harvard.edu/abs/2012ApJ...751..158H
Perturbation of Compact Planetary Systems by Distant Giant Planets http://adsabs.harvard.edu/abs/2017MNRAS.467.1531H
The circulation of dust in protoplanetary discs and the initial conditions of planet formation http://adsabs.harvard.edu/abs/2014MNRAS.440.3545H
Overcoming the Meter Barrier and the Formation of Systems with Tightly Packed Inner Planets (STIPs) http://adsabs.harvard.edu/abs/2014ApJ...792L..27B
The Formation of Systems with Tightly-packed Inner Planets (STIPs) via Aerodynamic Drift http://adsabs.harvard.edu/abs/2013arXiv1306.0566B
The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths http://adsabs.harvard.edu/abs/2013MNRAS.431.3444C
Giant planet formation in radially structured protoplanetary discs http://adsabs.harvard.edu/abs/2016MNRAS.460.2779C
On the formation of compact planetary systems via concurrent core accretion and migration http://adsabs.harvard.edu/abs/2016MNRAS.457.2480C
On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs http://adsabs.harvard.edu/abs/2014MNRAS.445..479C
Global Models of Planetary System Formation http://adsabs.harvard.edu/abs/2013prpl.conf2H014C
The In Situ Formation of Giant Planets at Short Orbital Periods http://adsabs.harvard.edu/abs/2016ApJ...817L..17B
The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets http://adsabs.harvard.edu/abs/2016ApJ...827L..37S
A metallicity recipe for rocky planets http://adsabs.harvard.edu/abs/2015MNRAS.453.1471D
A class of warm Jupiters with mutually inclined, apsidally misaligned close friends http://adsabs.harvard.edu/abs/2014Sci...346..212D
On the Tidal Origin of Hot Jupiter Stellar Obliquity Trends http://adsabs.harvard.edu/abs/2014ApJ...790L..31D
Giant Planets Orbiting Metal-rich Stars Show Signatures of Planet-Planet Interactions http://adsabs.harvard.edu/abs/2013ApJ...767L..24D
Correlations between Compositions and Orbits Established by the Giant Impact Era of Planet Formation http://adsabs.harvard.edu/abs/2016ApJ...822...54D
Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short and Ultra-Short Period Planets http://adsabs.harvard.edu/abs/2017arXiv170208461L
Breeding Super-Earths and Birthing Super-puffs in Transitional Disks http://adsabs.harvard.edu/abs/2016ApJ...817...90L
Make Super-Earths, Not Jupiters: Accreting Nebular Gas onto Solid Cores at 0.1 AU and Beyond http://adsabs.harvard.edu/abs/2014ApJ...797...95L
Save the Planet, Feed the Star: How Super-Earths Survive Migration and Drive Disk Accretion http://adsabs.harvard.edu/abs/2017ApJ...839..100F
Warm Jupiters as failed hot Jupiters http://adsabs.harvard.edu/abs/2015AAS...22540806D
http://adsabs.harvard.edu/abs/2014IAUS..299..136C Problems and Prospects in Planetesimal Formation
The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths http://adsabs.harvard.edu/abs/2013MNRAS.431.3444C
Evolution of protoplanetary discs with magnetically driven disc winds http://adsabs.harvard.edu/abs/2016A%26A...596A..74S
Suppression of type I migration by disk winds http://adsabs.harvard.edu/abs/2015A%26A...584L...1O
A reassessment of the in situ formation of close-in super-Earths http://adsabs.harvard.edu/abs/2015A%26A...578A..36O
Planetesimal Interactions Can Explain the Mysterious Period Ratios of Small Near-Resonant Planets http://adsabs.harvard.edu/abs/2015ApJ...803...33C
Planet-Disk Interactions and Early Evolution of Planetary Systems http://adsabs.harvard.edu/abs/2014prpl.conf..667B
Disk-Planets Interactions and the Diversity of Period Ratios in Kepler's Multi-planetary Systems http://adsabs.harvard.edu/abs/2013ApJ...778....7B
Type I planet migration in weakly magnetized laminar discs http://adsabs.harvard.edu/abs/2013MNRAS.430.1764G
Formation of Close in Super-Earths and Mini-Neptunes: Required Disk Masses and their Implications http://adsabs.harvard.edu/abs/2014ApJ...795L..15S
Avoiding resonance capture in multi-planet extrasolar systems http://adsabs.harvard.edu/abs/2017arXiv170407836P
http://online.kitp.ucsb.edu/online/evoplanets_c15/schlichting/
The formation of super-Earths and mini-Neptunes with giant impacts http://adsabs.harvard.edu/abs/2015MNRAS.448.1751I
Overstable Librations can Account for the Paucity of Mean Motion Resonances among Exoplanet Pairs http://adsabs.harvard.edu/abs/2014AJ....147...32G
Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets https://arxiv.org/abs/1705.07810
The maximum mass of planetary embryos formed in core-accretion models https://arxiv.org/abs/1705.06008
Observational evidence for two distinct giant planet populations https://arxiv.org/abs/1705.06090
The structure of terrestrial bodies: Impact heating, corotation limits and synestias https://arxiv.org/abs/1705.07858
In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs https://arxiv.org/abs/1705.08147
https://arxiv.org/pdf/1609.00960.pdf
https://arxiv.org/pdf/1606.01558.pdf
https://arxiv.org/pdf/1502.03270.pdf
https://arxiv.org/pdf/1701.01719.pdf
http://iopscience.iop.org/article/10.3847/2041-8213/aa6d08/meta
https://arxiv.org/pdf/1705.09320.pdf
https://arxiv.org/pdf/1705.09685.pdf
Self-induced dust traps: overcoming planet formation barriers http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1701.01115
Planet formation and disk-planet interactions
https://arxiv.org/abs/1707.07148
X-ray photoevaporation's limited success in the formation of planetesimals by the streaming instability https://arxiv.org/abs/1709.00361
A thermodynamic view of dusty protoplanetary disks https://arxiv.org/abs/1708.02945
Satellitesimal Formation via Collisional Dust Growth in Steady Circumplanetary Disks https://arxiv.org/abs/1708.01080
Resonant drag instability of grains streaming in fluids https://arxiv.org/abs/1706.05020
Evidence for universality in the initial planetesimal mass function https://arxiv.org/abs/1705.03889
How cores grow by pebble accretion https://arxiv.org/abs/1708.05392
The Formation of Uranus and Neptune: Fine Tuning in Core Accretion https://arxiv.org/abs/1708.00862
Simulations of Small Solid Accretion onto Planetesimals in the Presence of Gas https://arxiv.org/abs/1708.00450
Pebble accretion at the origin of water in Europa https://arxiv.org/abs/1707.05496
Eccentricity excitation and merging of planetary embryos heated by pebble accretion https://arxiv.org/abs/1706.06329
Possible formation pathways for the low density Neptune-mass planet HAT-P-26b https://arxiv.org/abs/1705.07794
The maximum mass of planetary embryos formed in core-accretion models https://arxiv.org/abs/1705.06008
N-body simulations of planet formation via pebble accretion I: First Results https://arxiv.org/abs/1705.04264
Chemical enrichment of giant planets and discs due to pebble drift https://arxiv.org/abs/1705.03305
The origin of the occurrence rate profile of gas giants inside 100 days https://arxiv.org/abs/1704.06383
Saving super-Earths: Interplay between pebble accretion and type I migration https://arxiv.org/abs/1704.01962
Formation of TRAPPIST-1 and other compact systems https://arxiv.org/abs/1703.06924
Planetesimal formation near the snowline: in or out? https://arxiv.org/abs/1702.02151
Disentangling Hot Jupiters formation location from their chemical composition https://arxiv.org/abs/1611.03128
Atmospheric Signatures of Giant Exoplanet Formation by Pebble Accretion https://arxiv.org/abs/1611.03083
FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets https://arxiv.org/abs/1611.01538
The Spiral Wave Instability Induced by a Giant Planet: I. Particle Stirring in the Inner Regions of Protoplanetary Disks https://arxiv.org/abs/1610.08502
Excess C/O and C/H in outer protoplanetary disk gas https://arxiv.org/abs/1610.07859
Giant planet formation at the pressure maxima of protoplanetary disks https://arxiv.org/abs/1610.01232
A pebbles accretion model with chemistry and implications for the solar system https://arxiv.org/abs/1609.03227
Late veneer and late accretion to the terrestrial planets https://arxiv.org/abs/1609.01785
Evolution of Protoplanetary Discs with Magnetically Driven Disc Winds https://arxiv.org/abs/1609.00437
Exploring plausible formation scenarios for the planet candidate orbiting Proxima Centauri https://arxiv.org/abs/1608.06908
Dust traps as planetary birthsites: basics and vortex formation https://arxiv.org/abs/1607.08250
Turbulence, Transport and Waves in Ohmic Dead Zones https://arxiv.org/abs/1606.03093
Formation, Orbital and Internal Evolutions of Young Planetary Systems https://arxiv.org/abs/1604.07558
Pebble Accretion and the Diversity of Planetary Systems https://arxiv.org/abs/1604.06362
Radiation hydrodynamical models of the inner rim in protoplanetary disks https://arxiv.org/abs/1604.04601
The radial dependence of pebble accretion rates: A source of diversity in planetary systems I. Analytical formulation https://arxiv.org/abs/1604.01291
Pebble Accretion in Turbulent Protoplanetary Disks https://arxiv.org/abs/1709.03530
Electron Heating and Saturation of Self-regulating Magnetorotational Instability in Protoplanetary Disks https://arxiv.org/abs/1709.07026
Linear growth of streaming instability in pressure bumps https://arxiv.org/abs/1709.08660
Planet formation and disk-planet interactions https://arxiv.org/abs/1707.07148
Is There a Temperature Limit in Planet Formation at 1000 K? https://arxiv.org/abs/1710.00606
Planetesimal formation starts at the snow line https://arxiv.org/abs/1710.00009
Inside-Out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales https://arxiv.org/abs/1709.10130
Effects of global gas flows on type I migration https://arxiv.org/abs/1710.01240
Formation, stratification, and mixing of the cores of Earth and Venus https://arxiv.org/abs/1710.01770
Exterior Companions to Hot Jupiters Orbiting Cool Stars are Coplanar https://arxiv.org/abs/1710.01737
Steamworlds: atmospheric structure and critical mass of planets accreting icy pebbles https://arxiv.org/abs/1710.03134
Optically Thin Core Accretion: How Planets Get Their Gas in Nearly Gas-Free Disks https://arxiv.org/abs/1710.02604
The dispersal of planet-forming discs: theory confronts observations https://arxiv.org/abs/1704.00214
Planet population synthesis driven by pebble accretion in cluster environments https://arxiv.org/abs/1710.10863
Neptune trojan formation during planetary instability and migration http://adsabs.harvard.edu/abs/2016A%26A...592A.146G
Checking the Compatibility of the Cold Kuiper Belt with a Planetary Instability Migration Model https://arxiv.org/abs/1710.05178
Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images https://arxiv.org/abs/1611.00015
Ninth Planet or Wandering Star ? https://arxiv.org/abs/1710.09455
Debris Disc Constraints on Planetesimal Formation https://arxiv.org/abs/1711.03490
Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities https://arxiv.org/abs/1711.03975
https://sci - hub.cc/
Secular Dynamics of an Exterior Test Particle: The Inverse Kozai and Other Eccentricity-Inclination Resonances https://arxiv.org/abs/1711.10495
Simulations of the Solar System's Early Dynamical Evolution with a Self-Gravitating Planetesimal Disk https://arxiv.org/abs/1712.07193
A New Model for Weak Turbulence in Protoplanetary Disks https://arxiv.org/abs/1711.04770
The pebble isolation mass --- scaling law and implications for the formation of super-Earths and gas giants https://arxiv.org/abs/1801.02341
The formation of mini-Neptunes https://arxiv.org/abs/1709.04736
Spontaneous concentrations of solids through two-way drag forces between gas and sedimenting particles https://arxiv.org/abs/1604.00791
Pebble dynamics and accretion onto rocky planets. I. Adiabatic and convective models https://arxiv.org/abs/1801.07707
Dust-vortex instability in the regime of well-coupled grains https://arxiv.org/abs/1801.07509
A dynamical context for the origin of Phobos and Deimos https://arxiv.org/abs/1801.07775
Dust Coagulation Regulated by Turbulent Clustering in Protoplanetary Disks https://arxiv.org/abs/1801.08805
Where can a Trappist-1 planetary system be produced? https://arxiv.org/abs/1801.05822
Dust evolution in protoplanetary discs and the formation of planetesimals. What have we learned from laboratory experiments? https://arxiv.org/abs/1802.00221
Dynamics of Porous Dust Aggregates and Gravitational Instability of Their Disk https://arxiv.org/abs/1705.04520
Gravitational instability of a dust layer composed of porous silicate dust aggregates in a protoplanetary disk https://arxiv.org/abs/1802.03121
Formation of Super-Earths https://arxiv.org/abs/1802.03090
Origins of Hot Jupiters https://arxiv.org/abs/1801.06117
Planetesimal formation during protoplanetary disk buildup https://arxiv.org/abs/1803.00575
On the Numerical Robustness of the Streaming Instability: Particle Concentration and Gas Dynamics in Protoplanetary Disks https://arxiv.org/abs/1803.03638
Catching drifting pebbles I. Enhanced pebble accretion efficiencies for eccentric planets https://arxiv.org/abs/1803.06149
Catching drifting pebbles II. A stochastic equation of motions for pebbles https://arxiv.org/abs/1803.06150
Resonances in the asteroid and trans-Neptunian belts: a brief review https://arxiv.org/abs/1803.06245
Dynamical Evolution of Planetary Systems https://arxiv.org/abs/1803.06704
Accretion Processes https://arxiv.org/abs/1803.06708
Particle accretion onto planets in discs with hydrodynamic turbulence https://arxiv.org/abs/1803.08730
Formation of Terrestrial Planets https://arxiv.org/abs/1803.08830
A brief overview of planet formation https://arxiv.org/abs/1803.10526
Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters https://arxiv.org/abs/1804.00013
How much does turbulence change the pebble isolation mass for planet formation? https://arxiv.org/abs/1804.00924
Formation of close-in super-Earths in evolving protoplanetary disks due to disk winds https://arxiv.org/abs/1804.01070
Planetary population synthesis https://arxiv.org/abs/1804.01532
Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals https://arxiv.org/abs/1804.02361
Architectures of planetary systems formed by pebble accretion https://arxiv.org/abs/1804.05510
Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion https://arxiv.org/abs/1805.00458
Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula http://adsabs.harvard.edu/abs/2018A%26A...611A..18L
On the Dynamics of the Inclination Instability https://arxiv.org/abs/1805.03651
Azimuthal and Vertical Streaming Instability at High Dust-to-gas Ratios and on the Scales of Planetesimal Formation https://arxiv.org/abs/1805.04326
Gas-Assisted Growth of Protoplanets in a Turbulent Medium https://arxiv.org/abs/1805.06898
Populations of Extrasolar Giant Planets from Transit and Radial Velocity Surveys https://arxiv.org/abs/1805.08391
The Emerging Paradigm of Pebble Accretion https://link.springer.com/chapter/10.1007%2F978-3-319-60609-5_7
Instabilities and Flow Structures in Protoplanetary Disks: Setting the Stage for Planetesimal Formation https://arxiv.org/abs/1806.03896
Formation of Giant Planets https://arxiv.org/abs/1806.05649
Self-Stirring of Debris Discs by Planetesimals Formed by Pebble Concentration https://arxiv.org/abs/1806.05431
Gas and multi-species dust dynamics in viscous protoplanetary discs: the importance of the dust back-reaction https://arxiv.org/abs/1806.10148
On the dynamics of pebbles in protoplanetary disks with magnetically-driven winds https://arxiv.org/abs/1806.10572
Dust evolution and satellitesimal formation in circumplanetary disks https://arxiv.org/abs/1807.02638
Formation of Solar system analogues II: post-gas phase growth and water accretion in extended discs via N-body simulations https://arxiv.org/abs/1807.01429
Giant planet effects on terrestrial planet formation and system architecture https://arxiv.org/abs/1807.02463
Streaming Instability of Multiple Particle Species in Protoplanetary Disks https://arxiv.org/abs/1808.01142
Transport of CO in Protoplanetary Disks: Consequences of Pebble Formation, Settling, and Radial Drift https://arxiv.org/abs/1808.01840
Planet Formation: An Optimized Population-Synthesis Approach https://arxiv.org/abs/1808.03293
Restrictions on the Growth of Gas Giant Cores via Pebble Accretion https://arxiv.org/abs/1808.05947
The initial conditions for planet formation: Turbulence driven by hydrodynamical instabilities in disks around young stars https://arxiv.org/abs/1808.08681
Collisional Growth of Icy Dust Aggregates in Disk Formation Stage: Difficulties for Planetesimal Formation via Direct Collisional Growth outside the Snowline https://arxiv.org/abs/1809.06733
A Lagrangian Model for Dust Evolution in Protoplanetary Disks: Formation of Wet and Dry Planetesimals at Different Stellar Masses https://arxiv.org/abs/1810.02370
Dynamics of multiple protoplanets embedded in gas/pebble disks and its dependence on Σ and ν parameters https://arxiv.org/abs/1810.03385
Impacts of dust feedback on a dust ring induced by a planet in a protoplanetary disk https://arxiv.org/abs/1810.05635
Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk https://arxiv.org/abs/1810.05166
Pebble trapping backreaction does not destroy vortices https://arxiv.org/abs/1810.07941
N-body simulations of terrestrial planet growth with resonant dynamical friction https://arxiv.org/abs/1810.07201
The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of the Radial Gas Pressure Gradient https://arxiv.org/abs/1810.10018
How planetary growth outperforms migration https://arxiv.org/abs/1811.00523
Impact bombardment on the regular satellites of Jupiter and Uranus during an episode of giant planet migration https://arxiv.org/abs/1811.04870
Excitation and depletion of the asteroid belt in the early instability scenario https://arxiv.org/abs/1811.07916
The Primordial Solar wind as a Sculptor of Terrestrial Planet Formation https://arxiv.org/abs/1811.11697
Solar System Formation in the Context of Extra-Solar Planets https://arxiv.org/abs/1812.01033
Observation of aerodynamic instability in the flow of a particle stream in a dilute gas https://arxiv.org/abs/1812.01072
Preliminary Trigonometric Parallaxes of 184 Late-T and Y Dwarfs and an Analysis of the Field Substellar Mass Function into the "Planetary" Mass Regime https://arxiv.org/abs/1812.01208
Seeding the Formation of Mercurys: An Iron-sensitive Bouncing Barrier in Disk Magnetic Fields https://arxiv.org/abs/1812.05338
The early instability scenario: terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation https://arxiv.org/abs/1812.07590
Instabilities in the Early Solar System due to a Self-gravitating Disk https://arxiv.org/abs/1812.08710
Are Pebble Pile Planetesimals Doomed? https://arxiv.org/abs/1901.07919
Gas flow around a planet embedded in a protoplanetary disc: the dependence on the planetary mass https://arxiv.org/abs/1901.08253
Thermal torque effects on the migration of growing low-mass planets https://arxiv.org/abs/1904.11047
The Boundary Between Gas-rich and Gas-poor Planets https://arxiv.org/abs/1904.10470
Rocky Planetesimal Formation Aided by Organics https://arxiv.org/abs/1905.03029
The End of Runaway: How Gap Opening Limits the Final Masses of Gas Giants https://arxiv.org/abs/1905.03887
Constraining the Formation of the Four Terrestrial Planets in the Solar System https://arxiv.org/abs/1908.04934
Pebbles versus Planetesimals: The case of Trappist-1 https://arxiv.org/abs/1908.04166
Exploring the conditions for forming cold gas giants via planetesimal accretion https://arxiv.org/abs/1909.10429
Planet formation: key mechanisms and global models https://arxiv.org/abs/2002.05756
planet nine at dps
edit- Orbital Clustering in Trans-Neptunian Objects
- We have conducted a clustering analysis of the orbits of extreme trans-Neptunian objects (TNOs). We report the results of this clustering analysis and discuss their implications for the orbital alignment of the putative Planet-9 hypothesized to sculpt the orbits of the extreme TNOs.
- Matthew Payne1, Matthew J. Holman1, Sam Hadden1
- Dynamics of a Possible Collisional Family of Extreme TNOs
- The Dark Energy Survey has been highly successful in discovering outer Solar System objects. In this presentation, we discuss the dynamics of three extreme TNOs, two of which were found by the DES. The similarity of their orbits leads us to consider the possibility that these three objects originated from a collision event. In addition, as these TNOs appear to be clustered in longitude of perihelion, we analyze their dynamics in the context of the Planet Nine hypothesis, particularly since they reside in the 150 AU < a < 250 AU transition region identified by Batygin and Brown (2016). We explore the diffusion and chaotic nature of their behavior both with and without the presence of Planet Nine, and evaluate the likelihood that these objects originated from a collision event.
- Tali Khain1, Juliette Becker2, Fred C. Adams1, 2, David W. Gerdes1, 2
- Debiasing the Distant Solar System Populations Using Pan-STARRS1
- We discuss our on-going effort to identify Trans-Neptunian Objects (TNOs) in the Pan-STARRS1 dataset, and to debias the size-frequency distributions (SFD) of detected TNO sub-populations in order to estimate their true population sizes. To measure our detection efficiency we used the model of Grav et al. (2011)[1], which includes Kuiper belt Objects (KBOs), Scattered Disc Objects (SDOs), and Centaurs. Our debiasing method accounts for the per-chip CCD sensitivity as well as CCD cell gaps. The search method for finding distant Solar System objects, which was developed for our initial work (Weryk et al., 2016)[2], led to discovery of 29 Centaurs, 243 KBOs and 61 SDOs from Pan-STARRS data spanning years 2010-2015. Our work is extended using more recent PS1 data.
- Eva Lilly (Schunova)1, 2, Robert J. Weryk1, Serge Chastel1, Larry Denneau1, Robert Jedicke1, Richard J. Wainscoat1, Kenneth C. Chambers1
- Biases in the OSSOS Detection of Large Semimajor Axis Trans-Neptunian Objects
- The accumulating but small set of large semimajor axis trans-Neptunian objects (TNOs) shows an apparent clustering in the orientations of their orbits. This clustering must either be representative of the intrinsic distribution of these TNOs, or else have arisen as a result of observation biases and/or statistically expected variations for such a small set of detected objects. The clustered TNOs were detected across different and independent surveys, which has led to claims that the detections are therefore free of observational bias. This apparent clustering has led to the so-called “Planet 9” hypothesis that a super-Earth currently resides in the distant solar system and causes this clustering. The Outer Solar System Origins Survey (OSSOS) is a large program that ran on the Canada–France–Hawaii Telescope from 2013 to 2017, discovering more than 800 new TNOs. One of the primary design goals of OSSOS was the careful determination of observational biases that would manifest within the detected sample. We demonstrate the striking and non-intuitive biases that exist for the detection of TNOs with large semimajor axes. The eight large semimajor axis OSSOS detections are an independent data set, of comparable size to the conglomerate samples used in previous studies. We conclude that the orbital distribution of the OSSOS sample is consistent with being detected from a uniform underlying angular distribution.
- Brett Gladman1, Cory Shankman2
- Detection Bias for Trans-Neptunian Objects on Highly Elliptical Orbits with the Dark Energy Survey
- We report the discovery of several new "extreme" trans-Neptunian objects (ETNOs) with semimajor axis > 150 AU discovered using the Dark Energy Survey (DES). This currently ongoing survey is entering its fifth planned year of operation on the 4m Blanco telescope in Chile and is imaging 5000 deg2 in the grizY passbands to a limiting magnitude of r~23.8. Recent studies of the significance of the observed orbital clustering of the ETNOs have led to directly oppositional conclusions (M. Brown, arXiv:1706:04175; and C. Shankman et. al., arXiv:1706:05348). We present a detailed and independent study of the effects of observational bias on the observed clustering in the argument of perihelion and the longitude of perihelion of the most distant TNOs using the dataset of DES. This study is of particular interest due to DES's location at high ecliptic inclinations in addition to the wide area of sky covered by the survey, mitigating potential bias in measurements of both the argument of perihelion and the longitude of ascending node. The significance of observational bias on the discoveries made using DES has important implications on the hypothesis of a distant ninth planet in the solar system
- Stephanie Hamilton1, David W. Gerdes1
- A Wide Field Search for Extreme Trans-Neptunian Objects and a Super Earth in the Solar System
- We are currently conducting the deepest and widest field survey to date sensitive to Extreme Trans-Neptunian Objects (ETNOs), bodies that have semimajor axes greater than 150 au and perihelia higher than 35 au. Our survey is also sensitive to distant super-Earth mass planets such as that recently hypothesized to explain the orbital characteristics of ETNOs.
- Our survey instruments are Subaru Telescope Hyper Suprime-Cam (HSC) and the Cerro Tololo Interamerican Observatory Dark Energy Camera (DECam). HSC has a field of view of 1.75 square degrees on an 8 meter diameter telescope and DECam has a field of view of about 3 square degrees on a 4 meter diameter telescope. HSC and DECam are two of the largest light grasp survey tools in the world capable of detecting the hypothesized planet. We have surveyed a few thousand square degrees with DECam (magnitude 24) and HSC (magnitude 25).
- We probe both specific locations in the sky which are likely to contain the hypothesized planet as well as nearly uniform longitude range in both hemispheres of the sky to minimize the impact of observational bias. We will discuss current survey progress, which to date has found several distant objects beyond 50 au with interesting orbital properties.
- Chadwick A. Trujillo1, Scott S. Sheppard2, David J. Tholen3
- The search for Planet Nine
- We provide an update on our theoretical/computational/observational search for a giant planet far beyond Neptune. Using a combination of dynamical modeling of random starting configurations for the solar system and of forward modeling of known distant KBOs we have significantly constrained the orbital elements and mass of the potential planet. We provide an update of the best-fit parameters to aid the ongoing world wide search. Using our increaingly precise knowledge of how such a planet would interact with the solar system, we are engaged in a several large surveys to detect a planet with these parameters. We will discuss results from massive archival surveys and from our large Subaru Observatory program.
- Michael E. Brown1
- Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine
- We present the results of an N-body analysis of the dynamical stability of a selection of outer solar system objects in the presence of the proposed new Solar System member Planet Nine. Our simulations show that some combinations of orbital elements ($a,e$) result in Planet Nine acting as a stabilizing influence on the TNOs, which can otherwise be destabilized by interactions with Neptune. We also see that some TNOs transition between several different mean-motion resonances during their lifetimes while still retaining approximate apsidal anti-alignment with Planet Nine. This behavior suggests that remaining in one particular orbit is not a requirement for orbital stability. As one product of our simulations, we present an {\it a posteriori} probability distribution for the semi-major axis and eccentricity of the proposed Planet Nine based on TNO stability. We discuss this result in the broader context of the Planet Nine debate and the dynamical stability of the detached Kuiper Belt. We also announce the discovery of a new large semi-major axis, highly-inclined TNO, found in the Dark Energy Survey (DES) data. This new object’s orbit places it in the same population as was used to predict the existence of Planet Nine, and so this new object also helps constrain the orbital elements of the proposed Planet Nine.
- Juliette Becker1, Fred C. Adams1, Tali Khain1, Stephanie Hamilton1, David W. Gerdes1
- Extreme Resonant Dynamics, the Dynamics of Extreme TNOs in Mean Motion Resonances With Planet 9
- Significant clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has (re)kindled interest in the hypothesis of a distant ninth planet of the solar system (Trujillo & Sheppard 2014, Batygin & Brown 2016). Recent works by Malhotra et al. (2016) and Millholland et al. (2017) find that the orbital periods of these distant TNOs could be explained as a series of small integer ratio mean motion resonances (MMRs) with the putative `Planet 9’. The large eccentricities and inclinations of these distant TNOs, along with the proposed orbit of Planet 9, make the proposed resonant motions of these objects a rich dynamical problem. We explore the dynamics of mean motion resonances at large eccentricities and inclination, focussing on implications for observing a distant resonant population of TNOs and constraining the orbital properties of Planet 9.
- Sam Hadden1, Matthew J. Payne1, Matthew J. Holman1, Sarah Millholland2
- Mean-Motion Resonances and the Search for Planet Nine
- A key line of evidence for the existence of Planet Nine in the solar system is the physical clustering of Kuiper belt orbits with semi-major axis greater than ~250 au. It is expected that a fraction of this population is entrained in mean-motion resonances with Planet Nine, and therefore potentially holds key constraints on Planet Nine's present-day mean anomaly. In this talk, we report a suite of numerical simulations that inform the practical implications of employing resonant relationships to deduce Planet Nine's current on-sky location.
- Elizabeth Bailey1, Michael Brown1, Konstantin Batygin1
- Evidence for self-gravity in a massive Hills Cloud
- The Hills Cloud is a hypothesized disk of icy comets, asteroids and minor planets left over from the formation of the Solar System. Spanning ~250 - 104 AU it is relatively isolated from the gravitational effects of the inner Solar System and outer Galaxy. As the least observable component of the Oort Cloud, predictions for its mass span at least two orders of magnitude, typically ranging from 0.1 - 10 Earth masses. Here we show that self-gravity acting between bodies within the Hills Cloud dramatically changes their orbital distribution (the inclination instability; Madigan & McCourt, 2016). Inclinations increase exponentially, eccentricities lower (detaching the bodies from the inner Solar System) and orbits cluster in argument of perihelion. We show how the orbits of Sedna and other high perihelion objects can be used to constrain the mass of the Hills cloud.
- Alexander Zderic1, Ann-Marie Madigan1, Jacob Fleisig1
Nesvorný et al.: Dynamics in Mean Motion Resonances https://www.lpi.usra.edu/books/AsteroidsIII/pdf/3026.pdf
Late Heavy Bombardment
edit3.3. The Late Heavy Bombardment as a smoking gun for a late instability of the giant planets In Fig. 8 the dynamical instability occurs early, after only 2 My from the beginning of the simulation. However, there is a strong indication that in our solar system the onset of the dynamical instability happened much later, approximately 600 My after the disappearance of the disk of gas: this piece of evidence comes from the so-called “Late Heavy Bombardment” (LHB). The LHB is a cataclysmic period between ∼ 4.0 and ∼ 3.8 Gy ago, marked by an extraordinarily high rate of collisions on the Moon (Tera et al., 1974; Ryder, 1990, 2002; Cohen et al., 2000; Ryder et al., 2000). Some authors still contend the existence of such a spike in the history of the bombardment rate (see for instance Baldwin, 2006; Hartmann et al., 2007) and interpret the high bombardment rate ∼ 3.9 Gy ago as the tail of a slowly declining, even-more-intense bombardment occurring since the time of formation of the terrestrial planets. However, this seems to be implausible, for several reasons:
i) 600 million years of continual impacts should have left an obvious trace on the Moon. So far, no such trace has been found. The isotopic dating of the samples returned by the various Apollo and Luna missions revealed no impact melt-rock older than 3.92 Gy (Ryder, 1990; Ryder et al. 2002). The lunar meteorites confirm this age limit. The meteorites provide a particularly strong argument because they likely originated from random locations on the Moon (Cohen et al., 2000), unlike the lunar samples collected directly on its surface. A complete resetting of all ages all over the Moon is possible (Hartmann et al., 2000) but highly unlikely, considering the difficulties of completely resetting isotopic ages at the scale of a full planet (Deutsch and Scharer, 1994). The U-PB and Rb-Sr isochrones of lunar highland samples indicate metamorphic events between 3.85 and 4 Gy ago (Tera et al., 1974). There is no evidence for these isotopic systems being reset by intense collisions between 4.4 and 3.9 Gy.
ii) The old upper crustal lithologies of the Moon do not show the expected enrichment in siderophile elements (in particular the Platinum Group Elements) implied by a period of intense collisions (Ryder et al., 2000) lasting 600 My.
iii) If the elevated mass accretion documented in the period around 3.9 Gy is considered to be the tail end of an extended period of even more intense collisions, the Moon should have reached 95% of its total mass about 4.1 Gy ago instead of 4.5 Gy ago (Ryder, 2002; Koeberl, 2004).
iv) Given the fast dynamical and collisional decay of the population of planetesimals that remain in the vicinity of the Earth’s orbit at the end of the accretion process of the terrestrial planets, the formation of two huge impact structures such as the Imbrium and Orientale basins (and probably many more) on the Moon 600 My later implies an implausible initial total mass of solids in the inner solar system (Bottke et al., 2007).
v) The bombardment rate 3.8-3.9 Gy ago (as deduced from the lunar crater record) was probably not intense enough to vaporize the oceans on Earth (Abramov and Mojzsis, 2009). However, if this – 26 – bombardment rate had been the tail of a more intense bombardment, smoothly decaying over time since lunar formation, the ocean evaporation threshold should have been overcome just a few hundreds of millions of years earlier (∼ 4.2 Gy ago). This contrasts with the oxygen isotopic signature of the oldest known zircons (age: 4.4 Gy), which indicates formation temperatures compatible with the existence of liquid water (Valley et al., 2002).
vi) These same zircons retain secondary over-growths developed after primary core crystallization during their 4.4 Gy long crustal residence times. The rim over-growths can record discrete thermal events subsequent to zircon formation and provide a unique window in crustal processes before the beginning of the terrestrial rock record. In (Trail et al., 2007), all these rim over-growths have been dated to be ∼ 3.9 Gy old. No (preserved) older rim over-growths, associated to more primordial events, have been found. This suggests that the thermal events were associated to impacts, and that these impacts were concentrated in time about 3.9 Gy ago. Therefore, it can be concluded that there is strong evidence for a cataclysmic Late Heavy Bombardment event around 3.9 Gy ago. This cataclysm did not just affect the Moon, but has now been clearly established throughout the inner Solar System (Kring and Cohen, 2002). The exact duration of the cataclysm is difficult to estimate, however. Based on the cratering record of the Moon, it lasted between 20 and 200 My, depending on the mass flux estimate used in the calculation.
https://arxiv.org/abs/1106.4114
Constraints suggest that in the real Solar System the instability
occurred relatively late, probably around 4.1 Gy
ago (namely 450 My after gas removal). These constraints
come primarily from the Moon. Dating lunar impact basins
is difficult, because it is not clear which samples are related
to which basin (e.g., Norman and Nemchin, 2014).
Nevertheless, it is clear that several impact basins, probably
a dozen, formed in the 4.1-3.8 Gy period (see Fassett
and Minton, 2013, for a review). Numerical tests demonstrate
that these late basins (even just Imbrium and Orientale,
whose young ages are undisputed) are unlikely to
have been produced by a declining population of planetesimals,
left-over from the terrestrial planet accretion process,
because of their short dynamical and collisional lifetimes
(Bottke et al. 2007). There is also a surge in lunar rock impact
ages ∼4 Gy ago, which contrasts with a paucity of impact
ages between 4.4 and 4.2 Gy (Cohen et al., 2005). This
is difficult to explain if the bombardment had been caused 11
by a population of left-over planetesimals slowly declining
over time. The situation is very similar for the bombardment
of asteroids, with meteorites showing a surge in impact
ages 4.1 Gy ago and a paucity of ages between 4.2-4.4
Gy (Marchi et al., 2013). Meteorites also show many impact
ages near 4.5 Gy ago, demonstrating that the apparent
lack of events in the 4.2-4.4 Gy interval is not due to clock
resetting processes. All these constraints strongly suggest
the appearance of a new generation of projectiles in the inner
solar system about 4.1 Gy ago, which argues that either
a very big asteroid broke up at that time (Cuk, 2012; but
such a break-up is very unlikely from collision probability
arguments and we don’t see any remnant asteroid family
supporting this hypothesis), or that the dynamical instability
of the giant planets occurred at that time, partially destabilizing
small body reservoirs that had remained stable until
then.
Other constraints pointing to the late instability of the giant
planets come from the outer Solar System. If the planets
had become unstable at the disappearance of the gas in the
disk, presumably the Sun would still have been in a stellar
cluster and consequently the Oort cloud would have formed
more tightly bound to the Sun than it is thought to be from
the orbital distribution of long period comets (Brasser et al.,
2008, 2012). Also, the impact basins on Iapetus (a satellite
of Saturn) have topographies that have relaxed by 25%
or less, which argues that they formed in a very viscous
lithosphere; according to models of the thermal evolution of
the satellite, these basins can not have formed earlier than
200 My after the beginning of the Solar System (Robuchon
et al., 2011)
Moreover, the escape to high-eccentricity orbits of bodies from the main belt and E-belt regions produced a spike in the impact velocities on main belt asteroids at the time of the giant planet instability. Thus, although the impact frequency on asteroids decreased with the depletion of 50% of the main belt population and 100% of the E-belt population, the production of impact melt on asteroids increased during this event because melt production is very sensitive to impact velocities (Marchi et al., 2013). For this reason, the impact ages of meteorites show a spike at 4.1 Gy like the lunar rocks, although for the latter this is due to a surge in the impact rate
https://arxiv.org/abs/1501.06204
Comets
editThe Influence of Outer Solar System Architecture on the Structure and Evolution of the Oort Cloud https://arxiv.org/abs/1305.5253
A model for the common origin of Jupiter family and Halley type comets https://arxiv.org/abs/1402.1339
Reassessing the formation of the inner Oort cloud in an embedded star cluster https://arxiv.org/abs/1110.5114
Numerical models of Oort Cloud formation and comet delivery https://search.proquest.com/docview/275546525/fulltextPDF
The discovery rate of new comets in the age of large surveys. Trends, statistics, and an updated evaluation of the comet flux http://articles.adsabs.harvard.edu/full/2010IAUS..263...76F
Reassessing the Source of Long-Period Comets https://arxiv.org/abs/0912.1645
2-Gyr Simulation of the Oort-cloud Formation II. A Close View of the Inner Oort cloud after the First Two Giga-years https://link.springer.com/article/10.1007%2Fs11038-009-9297-8
The destruction of an Oort Cloud in a rich stellar cluster https://arxiv.org/abs/1704.03341
Shaping of the inner Oort cloud by Planet Nine https://arxiv.org/abs/1609.08614
Effect of Stellar Encounters on Comet Cloud Formation https://arxiv.org/abs/1507.00502
Planetary Protectors: Giant Planets and the Oort Cloud http://www.mpia.de/homes/ppvi/posters/2K098.pdf