Triple deck theory is a theory that describes a three-layered boundary-layer structure when sufficiently large disturbances are present in the boundary layer. This theory is able to successfully explain the phenomenon of boundary layer separation, but it has found applications in many other flow setups as well,[1] including the scaling of the lower-branch instability (T-S) of the Blasius flow,[2][3] etc. James Lighthill, Lev Landau and others were the first to realize that to explain boundary layer separation, different scales other than the classical boundary-layer scales need to be introduced. These scales were first introduced independently by James Lighthill and E. A. Müller in 1953.[4][5] The triple-layer structure itself was independently discovered by Keith Stewartson (1969)[6] and V. Y. Neiland (1969)[7] and by A. F. Messiter (1970).[8] Stewartson and Messiter considered the separated flow near the trailing edge of a flat plate, whereas Neiland studied the case of a shock impinging on a boundary layer.
Suppose and are the streamwise and transverse coordinate with respect to the wall and be the Reynolds number, the boundary layer thickness is then . The boundary layer coordinate is . Then the thickness of each deck is
The lower deck is characterized by viscous, rotational disturbances, whereas the middle deck (same thickness as the boundary-layer thickness) is characterized by inviscid, rotational disturbances. The upper deck, which extends into the potential flow region, is characterized by inviscid, irrotational disturbances.
The interaction zone identified by Lighthill in the streamwise direction is
The most important aspect of the triple-deck formulation is that pressure is not prescribed, and so it has to be solved as part of the boundary-layer problem. This coupling between velocity and pressure reintroduces ellipticity to the problem, which is in contrast to the parabolic nature of the classical boundary layer of Prandtl.[9]
Flow near the trailing edge of a flat plate
editLet the length scales be normalized with the plate length and the velocity scale by the free-stream velocity ; then the only parameter in the problem is the Reynolds number . Let the origin of the coordinate system be located at the trailing edge of the plate. Further let be the non-dimensional velocity components, be the non-dimensional pressure field and be the non-dimensional stream function such that and . For shortness of notation, let us introduce the small parameter . The coordinate for horizontal interaction and for the three decks can then be defined by[10]
As (or ), the solution should approach the asymptotic behaviour of the Blasius solution, which is given by
where is the Blasisus function which satisfies subjected to . As (or ), the solution should approach the asymptotic behaviour of the Goldstein's near wake, which is given by
where and . The Goldstein's inner wake solution is not needed here.
Middle deck
editThe solution in the middle deck is found to be
where is referred to as the displacement function and is referred to as the pressure function, to be determined from the upper and lower deck problems. Note that the correction to the Blasius stream function is of the order , although the pressure perturbation is only order
Upper deck
editIn the upper deck, the solution is found to given by
where . Furthermore, the upper deck problem also provides the relation between the displacement and the pressure function as
in which stands for Cauchy principal value. One may notice that the pressure function and the derivative of the displacement function (aka transverse velocity) forms a Hilbert transform pair.
Lower deck
editIn the lower deck, the solution is given by
where will satisfy a boundary-layer type equations driven by the pressure gradient and the slip-velocity of order generated by the middle deck. It is convenient to introduce and , where and must satisfy
These equations are subjected to the conditions
where . The displacement function and therefore must be obtained as part of the solution. The above set of equations may resemble normal boundary-layer equations, however it has an elliptic character since the pressure gradient term now is non-local, i.e., the pressure gradient at a location depends on other locations as well. Because of this, these equations are sometimes referred to as the interactive boundary-layer equations. The numerical solution of these equations were obtained by Jobe and Burggraf in 1974.[11]
See also
editReferences
edit- ^ Smith, F. T. (1982). "On the high Reynolds number theory of laminar flows". IMA J. Appl. Math. 28 (3): 207–281. doi:10.1093/imamat/28.3.207.
- ^ Smith, F. T. (1979). "On the non-parallel flow stability of the Blasius boundary layer". Proc. R. Soc. Lond. 366 (1724): 91–109. Bibcode:1979RSPSA.366...91S. doi:10.1098/rspa.1979.0041. S2CID 112228524.
- ^ Lin, C. C. (1946). "On the stability of two-dimensional parallel flows. III. Stability in a viscous fluid". Quart. Appl. Math. 3 (4): 277–301. doi:10.1090/qam/14894.
- ^ Lighthill, Michael James (1953). "On boundary layers and upstream influence II. Supersonic flows without separation". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 217 (1131): 478–507. Bibcode:1953RSPSA.217..478L. doi:10.1098/rspa.1953.0075. S2CID 95497146.
- ^ E. A. Müller (1953) Dissertation, University of Göttingen.
- ^ Stewartson, K. (1969). "On the flow near the trailing edge of a flat plate II". Mathematika. 16 (1): 106–121. doi:10.1112/S0025579300004678.
- ^ Neiland, V. Ya. (1969). "Theory of laminar boundary layer separation in supersonic flow". Fluid Dynamics. 4 (4): 33–35. doi:10.1007/BF01094681.
- ^ Messiter, A. F. (1970). "Boundary-layer flow near the trailing edge of a flat plate". SIAM Journal on Applied Mathematics. 18 (1): 241–257. doi:10.1137/0118020.
- ^ Prandtl, L. (1904). "Uber Flussigkeitsbewegung bei sehr kleiner Reibung". Verh. III. Int. Math. Kongr.: 484–491.
- ^ Sobey, I. J. (2000). Introduction to interactive boundary layer theory (Vol. 3). Oxford Texts in Applied and En.
- ^ Jobe, C. E., & Burggraf, O. R. (1974). The numerical solution of the asymptotic equations of trailing edge flow. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 340(1620), 91-111.