An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, March 18, 1950,[1] with a magnitude of 0.962. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days before apogee (on March 22, 1950, at 10:50 UTC), the Moon's apparent diameter was smaller.[2]
Solar eclipse of March 18, 1950 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | 0.9988 |
Magnitude | 0.962 |
Maximum eclipse | |
Duration | - |
Coordinates | 60°54′S 40°54′E / 60.9°S 40.9°E |
Max. width of band | - km |
Times (UTC) | |
Greatest eclipse | 15:32:01 |
References | |
Saros | 119 (62 of 71) |
Catalog # (SE5000) | 9398 |
It was unusual in that while it is an annular solar eclipse, it is not a central solar eclipse. A non-central eclipse is one where the center-line of annularity or totality, whatever it is, does not intersect the surface of the Earth (when the gamma is between 0.9972 and 1.0260). This rare type occurs when annularity is only visible at sunset or sunrise in a polar region.
Annularity was visible from a part of Antarctica. A partial eclipse was visible for extreme southern South America, Antarctica, and Southern Africa. This was the last of 54 umbral solar eclipses in Solar Saros 119.
Eclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1950 March 18 at 13:11:15.9 UTC |
Equatorial Conjunction | 1950 March 18 at 14:27:07.9 UTC |
First Umbral External Contact | 1950 March 18 at 15:09:02.7 UTC |
Ecliptic Conjunction | 1950 March 18 at 15:20:29.9 UTC |
Greatest Eclipse | 1950 March 18 at 15:32:01.3 UTC |
Last Umbral External Contact | 1950 March 18 at 15:55:41.2 UTC |
Last Penumbral External Contact | 1950 March 18 at 17:53:16.2 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.96198 |
Eclipse Obscuration | - |
Gamma | −0.99880 |
Sun Right Ascension | 23h50m43.1s |
Sun Declination | -01°00'22.1" |
Sun Semi-Diameter | 16'03.9" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 23h52m29.2s |
Moon Declination | -01°48'04.0" |
Moon Semi-Diameter | 14'55.6" |
Moon Equatorial Horizontal Parallax | 0°54'47.0" |
ΔT | 29.2 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
March 18 Ascending node (new moon) |
April 2 Descending node (full moon) |
---|---|
Annular solar eclipse Solar Saros 119 |
Total lunar eclipse Lunar Saros 131 |
Related eclipses
editEclipses in 1950
edit- An annular solar eclipse on March 18.
- A total lunar eclipse on April 2.
- A total solar eclipse on September 12.
- A total lunar eclipse on September 26.
Metonic
edit- Preceded by: Solar eclipse of May 30, 1946
- Followed by: Solar eclipse of January 5, 1954
Tzolkinex
edit- Preceded by: Solar eclipse of February 4, 1943
- Followed by: Solar eclipse of April 30, 1957
Half-Saros
edit- Preceded by: Lunar eclipse of March 13, 1941
- Followed by: Lunar eclipse of March 24, 1959
Tritos
edit- Preceded by: Solar eclipse of April 19, 1939
- Followed by: Solar eclipse of February 15, 1961
Solar Saros 119
edit- Preceded by: Solar eclipse of March 7, 1932
- Followed by: Solar eclipse of March 28, 1968
Inex
edit- Preceded by: Solar eclipse of April 8, 1921
- Followed by: Solar eclipse of February 26, 1979
Triad
edit- Preceded by: Solar eclipse of May 17, 1863
- Followed by: Solar eclipse of January 16, 2037
Solar eclipses of 1950–1953
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipse on July 11, 1953 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1950 to 1953 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | March 18, 1950 Annular (non-central) |
0.9988 | 124 | September 12, 1950 Total |
0.8903 | |
129 | March 7, 1951 Annular |
−0.242 | 134 | September 1, 1951 Annular |
0.1557 | |
139 | February 25, 1952 Total |
0.4697 | 144 | August 20, 1952 Annular |
−0.6102 | |
149 | February 14, 1953 Partial |
1.1331 | 154 | August 9, 1953 Partial |
−1.344 |
Saros 119
editThis eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Series members 54–71 occur between 1801 and 2112: | ||
---|---|---|
54 | 55 | 56 |
December 21, 1805 |
January 1, 1824 |
January 11, 1842 |
57 | 58 | 59 |
January 23, 1860 |
February 2, 1878 |
February 13, 1896 |
60 | 61 | 62 |
February 25, 1914 |
March 7, 1932 |
March 18, 1950 |
63 | 64 | 65 |
March 28, 1968 |
April 9, 1986 |
April 19, 2004 |
66 | 67 | 68 |
April 30, 2022 |
May 11, 2040 |
May 22, 2058 |
69 | 70 | 71 |
June 1, 2076 |
June 13, 2094 |
June 24, 2112 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
22 eclipse events between January 5, 1935 and August 11, 2018 | ||||
---|---|---|---|---|
January 4–5 | October 23–24 | August 10–12 | May 30–31 | March 18–19 |
111 | 113 | 115 | 117 | 119 |
January 5, 1935 |
August 12, 1942 |
May 30, 1946 |
March 18, 1950 | |
121 | 123 | 125 | 127 | 129 |
January 5, 1954 |
October 23, 1957 |
August 11, 1961 |
May 30, 1965 |
March 18, 1969 |
131 | 133 | 135 | 137 | 139 |
January 4, 1973 |
October 23, 1976 |
August 10, 1980 |
May 30, 1984 |
March 18, 1988 |
141 | 143 | 145 | 147 | 149 |
January 4, 1992 |
October 24, 1995 |
August 11, 1999 |
May 31, 2003 |
March 19, 2007 |
151 | 153 | 155 | ||
January 4, 2011 |
October 23, 2014 |
August 11, 2018 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
March 25, 1819 (Saros 107) |
February 23, 1830 (Saros 108) |
January 22, 1841 (Saros 109) |
November 21, 1862 (Saros 111) | |
August 20, 1895 (Saros 114) |
July 21, 1906 (Saros 115) |
June 19, 1917 (Saros 116) | ||
May 19, 1928 (Saros 117) |
April 19, 1939 (Saros 118) |
March 18, 1950 (Saros 119) |
February 15, 1961 (Saros 120) |
January 16, 1972 (Saros 121) |
December 15, 1982 (Saros 122) |
November 13, 1993 (Saros 123) |
October 14, 2004 (Saros 124) |
September 13, 2015 (Saros 125) |
August 12, 2026 (Saros 126) |
July 13, 2037 (Saros 127) |
June 11, 2048 (Saros 128) |
May 11, 2059 (Saros 129) |
April 11, 2070 (Saros 130) |
March 10, 2081 (Saros 131) |
February 7, 2092 (Saros 132) |
January 8, 2103 (Saros 133) |
December 8, 2113 (Saros 134) |
November 6, 2124 (Saros 135) |
October 7, 2135 (Saros 136) |
September 6, 2146 (Saros 137) |
August 5, 2157 (Saros 138) |
July 5, 2168 (Saros 139) |
June 5, 2179 (Saros 140) |
May 4, 2190 (Saros 141) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
June 26, 1805 (Saros 114) |
June 7, 1834 (Saros 115) |
May 17, 1863 (Saros 116) |
April 26, 1892 (Saros 117) |
April 8, 1921 (Saros 118) |
March 18, 1950 (Saros 119) |
February 26, 1979 (Saros 120) |
February 7, 2008 (Saros 121) |
January 16, 2037 (Saros 122) |
December 27, 2065 (Saros 123) |
December 7, 2094 (Saros 124) |
November 18, 2123 (Saros 125) |
October 28, 2152 (Saros 126) |
October 8, 2181 (Saros 127) |
Notes
edit- ^ "March 18, 1950 Annular Solar Eclipse". timeanddate. Retrieved 4 August 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 4 August 2024.
- ^ "Annular Solar Eclipse of 1950 Mar 18". EclipseWise.com. Retrieved 4 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 119". eclipse.gsfc.nasa.gov.
References
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC