A partial solar eclipse occurred at the Moon’s ascending node of orbit between Sunday, July 30 and Monday, July 31, 2000,[1] with a magnitude of 0.6034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Solar eclipse of July 31, 2000 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.2166 |
Magnitude | 0.6034 |
Maximum eclipse | |
Coordinates | 69°30′N 59°54′W / 69.5°N 59.9°W |
Times (UTC) | |
Greatest eclipse | 2:14:08 |
References | |
Saros | 155 (5 of 71) |
Catalog # (SE5000) | 9508 |
This was the third of four partial solar eclipses in 2000, with the others occurring on February 5, July 1, and December 25.
A partial eclipse was visible for parts of northern Russia, northeastern Scandinavia, Alaska, western Canada, Greenland, and the western United States.
Images
editEclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2000 July 31 at 00:38:31.2 UTC |
Equatorial Conjunction | 2000 July 31 at 01:53:07.4 UTC |
Greatest Eclipse | 2000 July 31 at 02:14:07.7 UTC |
Ecliptic Conjunction | 2000 July 31 at 02:26:13.1 UTC |
Last Penumbral External Contact | 2000 July 31 at 03:49:55.6 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.60337 |
Eclipse Obscuration | 0.51669 |
Gamma | 1.21664 |
Sun Right Ascension | 08h42m24.7s |
Sun Declination | +18°13'08.6" |
Sun Semi-Diameter | 15'45.4" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 08h43m16.7s |
Moon Declination | +19°26'16.2" |
Moon Semi-Diameter | 16'38.8" |
Moon Equatorial Horizontal Parallax | 1°01'05.5" |
ΔT | 63.9 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
July 1 Ascending node (new moon) |
July 16 Descending node (full moon) |
July 31 Ascending node (new moon) |
---|---|---|
Partial solar eclipse Solar Saros 117 |
Total lunar eclipse Lunar Saros 129 |
Partial solar eclipse Solar Saros 155 |
Related eclipses
editEclipses in 2000
edit- A total lunar eclipse on January 21.
- A partial solar eclipse on February 5.
- A partial solar eclipse on July 1.
- A total lunar eclipse on July 16.
- A partial solar eclipse on July 31.
- A partial solar eclipse on December 25.
Metonic
edit- Preceded by: Solar eclipse of October 12, 1996
Tzolkinex
edit- Followed by: Solar eclipse of September 11, 2007
Half-Saros
edit- Preceded by: Lunar eclipse of July 26, 1991
- Followed by: Lunar eclipse of August 6, 2009
Tritos
edit- Preceded by: Solar eclipse of August 31, 1989
- Followed by: Solar eclipse of July 1, 2011
Solar Saros 155
edit- Preceded by: Solar eclipse of July 20, 1982
- Followed by: Solar eclipse of August 11, 2018
Inex
edit- Preceded by: Solar eclipse of August 20, 1971
- Followed by: Solar eclipse of July 11, 2029
Triad
edit- Preceded by: Solar eclipse of September 30, 1913
- Followed by: Solar eclipse of June 1, 2087
Solar eclipses of 1997–2000
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The partial solar eclipses on July 1, 2000 and December 25, 2000 occur in the next lunar year eclipse set.
Solar eclipse series sets from 1997 to 2000 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
120 Totality in Chita, Russia |
March 9, 1997 Total |
0.9183 | 125 | September 2, 1997 Partial |
−1.0352 | |
130 Totality near Guadeloupe |
February 26, 1998 Total |
0.2391 | 135 | August 22, 1998 Annular |
−0.2644 | |
140 | February 16, 1999 Annular |
−0.4726 | 145 Totality in France |
August 11, 1999 Total |
0.5062 | |
150 | February 5, 2000 Partial |
−1.2233 | 155 | July 31, 2000 Partial |
1.2166 |
Saros 155
editThis eclipse is a part of Saros series 155, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 17, 1928. It contains total eclipses from September 12, 2072 through August 30, 2649; hybrid eclipses from September 10, 2667 through October 2, 2703; and annular eclipses from October 13, 2721 through May 8, 3064. The series ends at member 71 as a partial eclipse on July 24, 3190. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality will be produced by member 14 at 4 minutes, 5 seconds on November 6, 2162, and the longest duration of annularity will be produced by member 63 at 5 minutes, 31 seconds on April 28, 3046. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 1–16 occur between 1928 and 2200: | ||
---|---|---|
1 | 2 | 3 |
June 17, 1928 |
June 29, 1946 |
July 9, 1964 |
4 | 5 | 6 |
July 20, 1982 |
July 31, 2000 |
August 11, 2018 |
7 | 8 | 9 |
August 21, 2036 |
September 2, 2054 |
September 12, 2072 |
10 | 11 | 12 |
September 23, 2090 |
October 5, 2108 |
October 16, 2126 |
13 | 14 | 15 |
October 26, 2144 |
November 7, 2162 |
November 17, 2180 |
16 | ||
November 28, 2198 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
22 eclipse events between December 24, 1916 and July 31, 2000 | ||||
---|---|---|---|---|
December 24–25 | October 12 | July 31–August 1 | May 19–20 | March 7 |
111 | 113 | 115 | 117 | 119 |
December 24, 1916 |
July 31, 1924 |
May 19, 1928 |
March 7, 1932 | |
121 | 123 | 125 | 127 | 129 |
December 25, 1935 |
October 12, 1939 |
August 1, 1943 |
May 20, 1947 |
March 7, 1951 |
131 | 133 | 135 | 137 | 139 |
December 25, 1954 |
October 12, 1958 |
July 31, 1962 |
May 20, 1966 |
March 7, 1970 |
141 | 143 | 145 | 147 | 149 |
December 24, 1973 |
October 12, 1977 |
July 31, 1981 |
May 19, 1985 |
March 7, 1989 |
151 | 153 | 155 | ||
December 24, 1992 |
October 12, 1996 |
July 31, 2000 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipse on October 24, 2098 (part of Saros 164) is also a part of this series but is not included in the table below.
Series members between 1801 and 2011 | ||||
---|---|---|---|---|
February 11, 1804 (Saros 137) |
January 10, 1815 (Saros 138) |
December 9, 1825 (Saros 139) |
November 9, 1836 (Saros 140) |
October 9, 1847 (Saros 141) |
September 7, 1858 (Saros 142) |
August 7, 1869 (Saros 143) |
July 7, 1880 (Saros 144) |
June 6, 1891 (Saros 145) |
May 7, 1902 (Saros 146) |
April 6, 1913 (Saros 147) |
March 5, 1924 (Saros 148) |
February 3, 1935 (Saros 149) |
January 3, 1946 (Saros 150) |
December 2, 1956 (Saros 151) |
November 2, 1967 (Saros 152) |
October 2, 1978 (Saros 153) |
August 31, 1989 (Saros 154) |
July 31, 2000 (Saros 155) |
July 1, 2011 (Saros 156) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
November 29, 1826 (Saros 149) |
November 9, 1855 (Saros 150) |
October 19, 1884 (Saros 151) |
September 30, 1913 (Saros 152) |
September 10, 1942 (Saros 153) |
August 20, 1971 (Saros 154) |
July 31, 2000 (Saros 155) |
July 11, 2029 (Saros 156) |
June 21, 2058 (Saros 157) |
June 1, 2087 (Saros 158) |
||
April 1, 2174 (Saros 161) |
Notes
edit- ^ "July 31, 2000 Partial Solar Eclipse". timeanddate. Retrieved 10 August 2024.
- ^ "Partial Solar Eclipse of 2000 Jul 31". EclipseWise.com. Retrieved 10 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 155". eclipse.gsfc.nasa.gov.
References
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
- Partial Solar Eclipse: July 30/31, 2000
- www.mreclipse.com Partial Solar Eclipse of 2000 July 30/31 by Fred Espenak (Spokane, WA)
- Video of partial solar eclipse in Nizhny Tagil, Russia