Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si4−) and carbide (C4−) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.

Related compounds include the germanide carbides, phosphide silicides, boride carbides and nitride carbides. Other related compounds may contain more condensed anion combinations such as the carbidonitridosilicates with C(SiN3)4 with N bridging between two silicon atoms.[1]

Production

edit

Silicide carbide compounds can be made by heating silicon, graphite, and metal together. It is important to exclude oxygen before and during the reaction.[2] The flux method involves a reaction in a molten metal. Gallium is suitable, because it dissolves carbon and silicon, but does not react with them.[3]

Properties

edit

Silicide carbides are a kind of ceramic, yet they also have metallic properties. They are not as brittle as most ceramics, but are stiffer than metals. They have high melting temperatures.[4]

In air silicide carbide compounds are stable, and are hardly affected by water. The appearance is often metallic grey. When powdered the colour is dark grey.[5]

When ErFe2SiC is dissolved in acid, mostly methane is produced, but the products include some hydrocarbons with two and three carbon atoms.[5]

The lanthanide contraction is evident with the cell sizes for rare earth element silicide carbides.[5]

List

edit
formula system space group unit cell Å, Z volume density comment ref
Al4SiC4 hexagonal P63mc a = 3.2746 c = 21.7081 201.59 band gap 2.2 eV [6]
Ti3SiC2 hexagonal P63/mmc a = 3.064 c = 17.65 Z=2 143.5 4.53 mp 2300°C [7]
Ti5Si3Cx [4]
Y3Si2C2 orthorhombic Cmmm a=3.845 b=15.634 c=4.213 253.3 Pauli paramagnetic

grey metallic air stable

[8]
Y5Si3C1.8 [9]
Y1.8C2Si8(B12)3 rhombohedral R3m a=10.101, c=16.441, Z=3 1452.7 1.551 [3]
YCr2Si2C tetragonal P4/mmm a=3.998 c=5.289 Z=1 Pauli paramagnetic

grey metallic

[10]
YCr3Si2C [11]
YMn2SiC orthorhombic Cmcm Z=4 [12]
YFe2SiC orthorhombic Cmcm Z=4 270 grey metallic

air stable

[5]
YRu2SiC orthorhombic Cmcm Z=4 [12]
Ba3Si4C2 tetragonal I4/mcm a = 8.7693 c = 12.3885 semiconductor; contains [Si4]4− and [C2]2− [13]
La3Si2C2 orthorhombic Cmmm a=4.039,b=16.884, and c=4.506 307.3 grey metallic

air stable

[8]
LaCr2Si2C tetragonal P4/mmm a=4.037 c=5.347 Z=1 [10]
La2Fe2Si2C monoclinic C2/m Z=2 [14]
Ce3Si2C2 orthorhombic Cmmm a=3.990 b=16.592 c= 4.434 293.5 grey metallic

air stable

?ferromagnetic (TC=10K

[8]
CeCr2Si2C tetragonal P4/mmm a=4.020 c=5.284 Z=1 grey metallic [10]
Ce2Fe2Si2C monoclinic C2/m Z=2 [14]
CeMo2Si2C [15]
CeRu2SiC orthorhombic Cmcm Z=4 [12]
Pr3Si2C2 orthorhombic Cmmm a=3.967 b=16.452 c=4.399 287.1 grey metallic

air stable

ferromagnetic TC=25K

[8]
PrCr2Si2C tetragonal P4/mmm a=4.022, c = 5.352 Z=1 86.58 6.00 grey metallic

Si-Si pair bond 2.453 Å

[10]
PrMo2Si2C tetragonal P4/mmm a=4.2139 c=5.4093 Z=1 96.1 metallic dark grey [16]
PrRu2SiC orthorhombic Cmcm Z=4 [12]
Nd3Si2C2 orthorhombic Cmmm a=3.949 b=16.303 c=4.375 281.7 grey metallic

air stable

ferromagnetic TC=30K

[8]
NdCr2Si2C tetragonal P4/mmm a=4.026 c=5.336 Z=1 grey metallic [10]
NdRu2SiC orthorhombic Cmcm Z=4 [12]
Sm3Si2C2 orthorhombic Cmmm a=3.913 b=16.073 c=4.316 271.4 grey metallic

air stable

antiferromagnetic TN=19K

[8]
SmCr2Si2C tetragonal P4/mmm a=4.011 c=5.321 Z=1 grey metallic [10]
SmMn2SiC orthorhombic Cmcm Z=4 [12]
SmFe2SiC orthorhombic Cmcm Z=4 278 grey metallic

air stable

[5]
Sm2Fe2Si2C monoclinic C2/m Z=2 [14]
SmRu2SiC orthorhombic Cmcm Z=4 [12]
Gd3Si2C2 orthorhombic Cmmm a=3.886 b=15.863 c=4.726 grey metallic

air stable

antiferromagnetic TN=50K

[8]
GdCr2Si2C tetragonal P4/mmm a=4.007 c=5.324 Z=1 263.6 grey metallic [10]
GdCr3Si2C hexagonal P6/mmm [11]
GdMn2SiC orthorhombic Cmcm Z=4 [12]
GdFe2SiC orthorhombic Cmcm Z=4 273 grey metallic

air stable

[5]
GdRu2SiC orthorhombic Cmcm a = 3.830, b = 11.069, c = 7.157 Z=4 303.4 8.745 silvery

air stable

[12][17]
Tb3Si2C2 orthorhombic Cmmm a=3.854 c=15.702 c=4.236 256.3 grey metallic

air stable

antiferromagnetic TN=28K

[8]
Tb1.8C2Si8(B12)3 rhombohedral R3m a=10.1171, c=16.397, Z=3 1453.4 1.583 [3]
TbCr2Si2C tetragonal P4/mmm a=4.002 c=5.314 Z=1 grey metallic [10]
TbCr3Si2C hexagonal P6/mmm [11]
TbMn2SiC orthorhombic Cmcm Z=4 [12]
TbFe2SiC orthorhombic Cmcm Z=4 270 grey metallic

air stable

[5]
TbRu2SiC orthorhombic Cmcm Z=4 [12]
Dy3Si2C2 orthorhombic Cmmm a=3.838 b=15.611 c=4.203 251.8 grey metallic

air stable

antiferromagnetic TN=30K

[8]
DyCr2Si2C tetragonal P4/mmm a=3.999 c=5.306 Z=1 grey metallic [10]
DyCr3Si2C hexagonal P6/mmm [11]
DyMn2SiC orthorhombic Cmcm Z=4 [12]
Dy2Fe2Si2C monoclinic C2/m grey metallic

air stable

[8]
DyFe2SiC orthorhombic Cmcm Z=4 269 grey metallic

air stable

[18]
DyRu2SiC orthorhombic Cmcm Z=4 [12]
Ho3Si2C2 orthorhombic Cmmm a=3.828 b=15.507 c=4.189 248.7 grey metallic

air stable

metamagnetic TN=14K

[8]
HoCr2Si2C tetragonal P4/mmm a=3.996 c=5.274 Z=1 grey metallic [10]
HoCr3Si2C hexagonal P6/mmm [11]
HoMn2SiC orthorhombic Cmcm Z=4 [12]
HoFe2SiC orthorhombic Cmcm Z=4 267 grey metallic

air stable

[5]
HoRu2SiC orthorhombic Cmcm Z=4 [12]
Er3Si2C2 orthorhombic Cmmm a=3.811 b=15.420 c=4.172 245.2 grey metallic

air stable

metamagnetic

[8]
Er1.8C2Si8(B12)3 rhombohedral R3m a=10.0994, c=16.354, Z=3 1444.6 1.619 [3]
ErCr3Si2C hexagonal P6/mmm [11]
ErMn2SiC orthorhombic Cmcm Z=4 [12]
ErFe2SiC orthorhombic Cmcm Z=4 265 grey metallic

air stable

[5]
ErRu2SiC orthorhombic Cmcm Z=4 [12]
Tm3Si2C2 orthorhombic Cmmm a=3.796, b=15.328, c=4.145 grey metallic

air stable

metamagnetic

[8]
TmCr3Si2C hexagonal P6/mmm [11]
TmMn2SiC orthorhombic Cmcm Z=4 [12]
TmFe2SiC orthorhombic Cmcm Z=4 263 grey metallic

air stable

[5]
Tm2Fe2Si2C monoclinic C2/m a = 10.497, b = 3.882, c = 6.646, β = 128.96° antiferromagnetic at TN = 2.7 K

metallic

[18]
TmRu2SiC orthorhombic Cmcm Z=4 [12]
LuCr3Si2C hexagonal P6/mmm [11]
LuMn2SiC orthorhombic Cmcm Z=4 [12]
LuFe2SiC orthorhombic Cmcm Z=4 261 grey metallic

air stable

[5]
Lu2Fe2Si2C monoclinic C2/m Pauli paramagnetic

metallic

[18]
YRe2SiC orthorhombic Cmcm Z=4 superconductor Tc ≈ 5.9 K [12][19]
Y2Re2Si2C monoclinic C2/m Z=2 [14]
La2Re2Si2C monoclinic C2/m Z=2 [14]
CeRe2SiC orthorhombic Cmcm Z=4 [12]
Ce2Re2Si2C monoclinic C2/m Z=2 [14]
PrRe2SiC orthorhombic Cmcm Z=4 [12]
NdRe2SiC orthorhombic Cmcm Z=4 [12]
Nd2Re2Si2C monoclinic C2/m Z=2 [14]
SmRe2SiC orthorhombic Cmcm Z=4 [12]
Sm2Re2Si2C monoclinic C2/m Z=2 [14]
GdRe2SiC orthorhombic Cmcm Z=4 [12]
Gd2Re2Si2C monoclinic C2/m Z=2 [14]
TbRe2SiC orthorhombic Cmcm Z=4 [12]
Tb2Re2Si2C monoclinic C2/m Z=2 [14]
DyRe2SiC orthorhombic Cmcm Z=4 [12]
Dy2Re2Si2C monoclinic C2/m Z=2 [14]
HoRe2SiC orthorhombic Cmcm Z=4 [12]
Ho2Re2Si2C monoclinic C2/m Z=2 [14]
ErRe2SiC orthorhombic Cmcm Z=4 [12]
Er2Re2Si2C monoclinic C2/m Z=2 [14]
TmRe2SiC orthorhombic Cmcm Z=4 [12]
YOs2SiC orthorhombic Cmcm Z=4 [12]
LaOs2SiC orthorhombic Cmcm Z=4 [12]
CeOs2SiC orthorhombic Cmcm Z=4 [12]
PrOs2SiC orthorhombic Cmcm a=3.9602,b=11.058,c=7.172 Z=4 [12]
NdOs2SiC orthorhombic Cmcm Z=4 [12]
SmOs2SiC orthorhombic Cmcm Z=4 [12]
GdOs2SiC orthorhombic Cmcm Z=4 [12]
TbOs2SiC orthorhombic Cmcm Z=4 [12]
DyOs2SiC orthorhombic Cmcm Z=4 [12]
HoOs2SiC orthorhombic Cmcm Z=4 [12]
ErOs2SiC orthorhombic Cmcm Z=4 [12]
TmOs2SiC orthorhombic Cmcm Z=4 [12]
ThCr2Si2C tetragonal [20]
ThMn2SiC orthorhombic Cmcm Z=4 [12]
ThFe2SiC orthorhombic Cmcm a = 3.8632, b = 10.806, c = 6.950 Z=4 290 8.79 grey metallic

air stable

[5]
Th2Fe2Si2C monoclinic C2/m Z=2 [14]
ThFe10SiC2-x tetragonal a = 10.053 and c = 6.516 [18]
ThMo2Si2C tetragonal P4/mmm a = 4.2296 c = 5.3571 Z=1 95.84 superconductor Tc=2.2K [21]
ThRu2SiC orthorhombic Cmcm Z=4 [12]
ThRe2SiC orthorhombic Cmcm Z=4 [12]
Th2Re2Si2C monoclinic C2/m a=11.1782, b=4.1753, c=7.0293, β=128.721° Z=2 [14]
ThOs2SiC orthorhombic Cmcm Z=4 [12]
U3Si2C2 tetrahedral I4/mmm a=3.5735 c=18.882 Z=2 241.1 10.94 C-Si bond 1.93 Å

Spin glass freeze at 28K

grey metallic

air stable

[2][22]
U20Si16C3 hexagonal P6/mmm a= 10.377, c= 8.005, Z= 1 746.5 11.67 grey metallic

air stable

[2]
UCr2Si2C tetragonal P4/mmm a =3.983 c =5.160 Z=1 81.84 8.32 [23]
UCr3Si2C hexagonal P6/mmm [11]
UMn2SiC orthorhombic Cmcm Z=4 [12]
UFe2SiC orthorhombic Cmcm Z=4 268 grey metallic

air stable

[5]
U2MoSi2C tetragonal P4/mbm a = 6.67 c = 4.33  [24]
UOs2SiC orthorhombic Cmcm Z=4 [12]

References

edit
  1. ^ Höppe, Henning A.; Kotzyba, Gunter; Pöttgen, Rainer; Schnick, Wolfgang (2001-11-23). "High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho2[Si4N6C] and Tb2[Si4N6C]". Journal of Materials Chemistry. 11 (12): 3300–3306. doi:10.1039/b106533p.
  2. ^ a b c Pöttgen, Rainer; Kaczorowski, Dariusz; Jeitschko, Wolfgang (1993). "Crystal structure, magnetic susceptibility and electrical conductivity of the uranium silicide carbides U 3 Si 2 C 2 and U 20 Si 16 C 3". J. Mater. Chem. 3 (3): 253–258. doi:10.1039/JM9930300253. ISSN 0959-9428.
  3. ^ a b c d Salvador, James R.; Bilc, Daniel; Mahanti, S. D.; Kanatzidis, Mercouri G. (2002). "Gallium Flux Synthesis of Tb3−xC2Si8(B12)3: A Novel Quaternary Boron-Rich Phase Containing B12 Icosahedra". Angewandte Chemie International Edition. 41 (5): 844–846. doi:10.1002/1521-3773(20020301)41:5<844::AID-ANIE844>3.0.CO;2-R. ISSN 1521-3773. PMID 12491355.
  4. ^ a b Andrievski, R A (2017-03-31). "High-melting-point compounds: new approaches and new results". Physics-Uspekhi. 60 (3): 276–289. Bibcode:2017PhyU...60..276A. doi:10.3367/UFNe.2016.09.037972. ISSN 1063-7869. S2CID 126026240.
  5. ^ a b c d e f g h i j k l m Witte, Anne M.; Jeitschko, Wolfgang (October 1994). "Carbides with Filled Re3B-Type Structure". Journal of Solid State Chemistry. 112 (2): 232–236. Bibcode:1994JSSCh.112..232W. doi:10.1006/jssc.1994.1297.
  6. ^ Ong, Chin Shen; Donzel-Gargand, Olivier; Berastegui, Pedro; Cedervall, Johan; Bayrak Pehlivan, Ilknur; Hervoches, Charles; Beran, Premysl; Edvinsson, Tomas; Eriksson, Olle; Jansson, Ulf (2024-05-27). "The Crystal Structure of Al 4 SiC 4 Revisited". Inorganic Chemistry. doi:10.1021/acs.inorgchem.4c00560. ISSN 0020-1669. PMC 11167590. PMID 38801717.
  7. ^ Nowotny, V (1971). "Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn". Progress in Solid State Chemistry. 5: 27–70. doi:10.1016/0079-6786(71)90016-1.
  8. ^ a b c d e f g h i j k l m Gerdes, Martin H.; Witte, Anne M.; Jeitschko, Wolfgang; Lang, Arne; Künnen, Bernd (July 1998). "Magnetic and Electrical Properties of a New Series of Rare Earth Silicide Carbides with the CompositionR3Si2C2(R=Y, La–Nd, Sm, Gd–Tm)". Journal of Solid State Chemistry. 138 (2): 201–206. Bibcode:1998JSSCh.138..201G. doi:10.1006/jssc.1998.7772.
  9. ^ Button, T.W.; McColm, I.J. (February 1984). "Reaction of carbon with lanthanide silicides IV: The Y5Si3-C system". Journal of the Less Common Metals. 97: 237–244. doi:10.1016/0022-5088(84)90028-6.
  10. ^ a b c d e f g h i j Pohlkamp, Marc W.; Jeitschko, Wolfgang (2001-11-01). "Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr 2 Si 2 C (R = Y, La - Nd, Sm, Gd - Ho)". Zeitschrift für Naturforschung B. 56 (11): 1143–1148. doi:10.1515/znb-2001-1108. ISSN 1865-7117. S2CID 197329371.
  11. ^ a b c d e f g h i Lemoine, Pierric; Tobola, Janusz; Vernière, Anne; Malaman, Bernard (May 2013). "Crystal and electronic structures of the new quaternary RCr3Si2C (R=Y, Gd–Tm, Lu, U) compounds". Journal of Solid State Chemistry. 201: 293–301. Bibcode:2013JSSCh.201..293L. doi:10.1016/j.jssc.2013.03.004.
  12. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw Hüfken, Thomas; Witte, Anne M.; Jeitschko, Wolfgang (February 1999). "Quaternary Silicide CarbidesAT2SiC (A=Rare Earth Elements and Actinoids,T=Mn, Re, Ru, Os) with DyFe2SiC-Type Structure". Journal of Solid State Chemistry. 142 (2): 279–287. Bibcode:1999JSSCh.142..279H. doi:10.1006/jssc.1998.8012.
  13. ^ Suzuki, Yuta; Morito, Haruhiko; Yamane, Hisanori (November 2009). "Synthesis and crystal structure of Ba3Si4C2". Journal of Alloys and Compounds. 486 (1–2): 70–73. doi:10.1016/j.jallcom.2009.06.157.
  14. ^ a b c d e f g h i j k l m n o Hüfken, Thomas; Witte, Anne M; Jeitschko, Wolfgang (February 1998). "Preparation and crystal structure of quaternary silicide carbides with Dy2Fe2Si2C type structure". Journal of Alloys and Compounds. 266 (1–2): 158–163. doi:10.1016/S0925-8388(97)00511-2.
  15. ^ Paramanik, U.B.; Anupam; Burkhardt, U.; Prasad, R.; Geibel, C.; Hossain, Z. (December 2013). "Valence fluctuation in CeMo2Si2C". Journal of Alloys and Compounds. 580: 435–441. arXiv:1303.2801. doi:10.1016/j.jallcom.2013.05.169. S2CID 97208932.
  16. ^ Dashjav, E.; Schnelle, W.; Wagner, F. R.; Kreiner, G.; Kniep, R. (April 2006). "Crystal structure of praseodymium dimolybdenum disilicide carbide, PrMo2Si2C". Zeitschrift für Kristallographie - New Crystal Structures. 221 (1–4): 267–268. doi:10.1524/ncrs.2006.221.14.267. ISSN 2197-4578. S2CID 95607580.
  17. ^ Fickenscher, Thomas; Rayaprol, Sudhindra; Appen, Jörg von; Dronskowski, Richard; Pöttgen, Rainer; Łat̀ka, Kazimierz; Gurgul, Jacek (2008-02-01). "Crystal Structure, Chemical Bonding, and Magnetic Hyperfine Interactions in GdRu 2 SiC". Chemistry of Materials. 20 (4): 1381–1389. doi:10.1021/cm7020406. ISSN 0897-4756.
  18. ^ a b c d Pöttgen, R.; Ebel, T.; Evers, C.B.H.; Jeitschko, W. (January 1995). "Preparation, Structure Refinement, and Properties of Some Compounds with Dy2Fe2Si2C- and LaMn11C2-x-Type Structure". Journal of Solid State Chemistry. 114 (1): 66–72. Bibcode:1995JSSCh.114...66P. doi:10.1006/jssc.1995.1010.
  19. ^ R De Faria, L; Ferreira, P P; Correa, L E; Eleno, L T F; Torikachvili, M S; Machado, A J S (2021-06-01). "Possible multiband superconductivity in the quaternary carbide YRe 2 SiC". Superconductor Science and Technology. 34 (6): 065010. arXiv:2105.07496. Bibcode:2021SuScT..34f5010R. doi:10.1088/1361-6668/abf7cf. ISSN 0953-2048. S2CID 234742562.
  20. ^ Xiao, Yusen; Li, Baizhuo; Duan, Qingchen; Liu, Shaohua; Ren, Qingyong; Lin, Yiqiang; Xia, Yuanhua; Cui, YanWei; Jiang, Hao; Wei, Shuli; Ren, Zhi; Mei, Yuxue; Sun, Yuping; Fu, Shenggui; Tan, Shugang (2023-12-28). "ThCr 2 Si 2 C: An Antiferromagnetic Metal with a Cr 2 C Square Lattice". Inorganic Chemistry. 63: 211–218. doi:10.1021/acs.inorgchem.3c02988. ISSN 0020-1669. PMID 38153326.
  21. ^ Liu, ZiChen; Li, BaiZhuo; Xiao, YuSen; Duan, QingChen; Cui, YanWei; Mei, YuXue; Tao, Qian; Wei, ShuLi; Tan, ShuGang; Jing, Qiang; Lu, Qing (July 2021). "Superconductivity in ThMo2Si2C with Mo2C square net". Science China Physics, Mechanics & Astronomy. 64 (7): 277411. arXiv:2104.09822. Bibcode:2021SCPMA..6477411L. doi:10.1007/s11433-021-1698-3. ISSN 1674-7348. S2CID 233307337.
  22. ^ Matar, S.F.; Pöttgen, R. (October 2012). "First principles investigations of the electronic structure and chemical bonding of U3Si2C2 – A uranium silicide–carbide with the rare [SiC] unit". Chemical Physics Letters. 550: 88–93. Bibcode:2012CPL...550...88M. doi:10.1016/j.cplett.2012.09.014.
  23. ^ Lemoine, Pierric; Vernière, Anne; Pasturel, Mathieu; Venturini, Gérard; Malaman, Bernard (2018-03-05). "Unexpected Magnetic Ordering on the Cr Substructure in UCr 2 Si 2 C and Structural Relationships in Quaternary U-Cr-Si-C Compounds". Inorganic Chemistry. 57 (5): 2546–2557. doi:10.1021/acs.inorgchem.7b02901. ISSN 0020-1669. PMID 29431434.
  24. ^ Kovarik, Libor; Devaraj, Arun; Lavender, Curt; Joshi, Vineet (June 2019). "Crystallographic and compositional analysis of impurity phase U2MoSi2C in UMo alloys". Journal of Nuclear Materials. 519: 287–291. Bibcode:2019JNuM..519..287K. doi:10.1016/j.jnucmat.2019.03.044. S2CID 132410543.