In algebraic geometry, a Seshadri constant is an invariant of an ample line bundle L at a point P on an algebraic variety. It was introduced by Demailly to measure a certain rate of growth, of the tensor powers of L, in terms of the jets of the sections of the Lk. The object was the study of the Fujita conjecture.

The name is in honour of the Indian mathematician C. S. Seshadri.

It is known that Nagata's conjecture on algebraic curves is equivalent to the assertion that for more than nine general points, the Seshadri constants of the projective plane are maximal. There is a general conjecture for algebraic surfaces, the Nagata–Biran conjecture.

Definition

edit

Let   be a smooth projective variety,   an ample line bundle on it,   a point of  ,   = { all irreducible curves passing through   }.

 .

Here,   denotes the intersection number of   and  ,   measures how many times   passing through  .

Definition: One says that   is the Seshadri constant of   at the point  , a real number. When   is an abelian variety, it can be shown that   is independent of the point chosen, and it is written simply  .

References

edit
  • Lazarsfeld, Robert (2004), Positivity in Algebraic Geometry I - Classical Setting: Line Bundles and Linear Series, Springer-Verlag Berlin Heidelberg, pp. 269–270
  • Bauer, Thomas; Grimm, Felix Fritz; Schmidt, Maximilian (2018), On the Integrality of Seshadri Constants of Abelian Surfaces, arXiv:1805.05413