The Schlenk equilibrium, named after its discoverer Wilhelm Schlenk, is a chemical equilibrium taking place in solutions of Grignard reagents[1][2] and Hauser bases[3][4]

2 RMgX ⇌ MgX2 + MgR2

The process described is an equilibrium between two equivalents of an alkyl or aryl magnesium halide on the left of the equation and one equivalent each of the dialkyl or diaryl magnesium compound and magnesium halide salt on the right. Organomagnesium halides in solution also form dimers and higher oligomers, especially at high concentration. Alkyl magnesium chlorides in ether are present as dimers.[5]

The position of the equilibrium is influenced by solvent, temperature, and the nature of the various substituents. It is known that magnesium center in Grignard reagents typically coordinates two molecules of ether such as diethyl ether or tetrahydrofuran (THF). Thus they are more precisely described as having the formula RMgXL2 where L = an ether. In the presence of monoethers, the equilibrium typically favors the alkyl- or arylmagnesium halide. Addition of dioxane to such solutions, however, leads to precipitation of the coordination polymers MgX2(μ-dioxane)2,[6] driving the equilibrium completely to the right.[7] The dialkylmagnesium compounds are popular in the synthesis of organometallic compounds.

References

edit
  1. ^ W. Schlenk; W. Schlenk, Jr. (1929). "Über die Konstitution der Grignardschen Magnesiumverbindungen". Chem. Ber. 62 (4): 920. doi:10.1002/cber.19290620422.
  2. ^ Grignard Reagents: New Developments H. G. Richey (Editor) ISBN 0-471-99908-3
  3. ^ Neufeld, R.: DOSY External Calibration Curve Molecular Weight Determination as a Valuable Methodology in Characterizing Reactive Intermediates in Solution. In: eDiss, Georg-August-Universität Göttingen. 2016.
  4. ^ Neufeld, R.; Teuteberg, T. L.; Herbst-Irmer, R.; Mata, R. A.; Stalke, D. (2016). "Solution Structures of Hauser Base iPr2NMgCl and Turbo-Hauser Base iPr2NMgCl·LiCl in THF and the Influence of LiCl on the Schlenk-Equilibrium". J. Am. Chem. Soc. 138 (14): 4796–4806. doi:10.1021/jacs.6b00345. PMID 27011251.
  5. ^ J. March Advanced Organic Chemistry 3rd Ed. ISBN 0-471-85472-7
  6. ^ Fischer, Reinald; Görls, Helmar; Meisinger, Philippe R.; Suxdorf, Regina; Westerhausen, Matthias (2019). "Structure–Solubility Relationship of 1,4-Dioxane Complexes of Di(hydrocarbyl)magnesium". Chemistry – A European Journal. 25 (55): 12830–12841. doi:10.1002/chem.201903120. PMC 7027550. PMID 31328293.
  7. ^ Richard A. Andersen, Geoffrey Wilkinson (1979). "Bis[(Trimethylsilyl)Methyl] Magnesium". Inorganic Syntheses. Vol. 19. pp. 262–265. doi:10.1002/9780470132500.ch61. ISBN 9780470132500.