Propylamphetamine (code name PAL-424; also known as N-propylamphetamine or NPA) is a psychostimulant of the amphetamine family which was never marketed. It was first developed in the 1970s, mainly for research into the metabolism of,[1] and as a comparison tool to, other amphetamines.[2]
Clinical data | |
---|---|
Other names | N-Propylamphetamine; NPA; PAL-424 |
ATC code |
|
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Metabolism | Hepatic |
Excretion | Renal |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.215.934 |
Chemical and physical data | |
Formula | C12H19N |
Molar mass | 177.291 g·mol−1 |
3D model (JSmol) | |
| |
| |
(what is this?) (verify) |
Propylamphetamine is inactive as a dopamine releasing agent in vitro and instead acts as a low-potency dopamine reuptake inhibitor with an IC50 of 1,013 nM.[3] The drug can be N-dealkylated to form amphetamine (10–20% excreted in urine after 24 hours).[4][5] A study in rats found propylamphetamine to be approximately 4-fold less potent than amphetamine.[6][7]
See also
editReferences
edit- ^ Nazarali AJ, Baker GB, Coutts RT, Pasutto FM (1983). "Amphetamine in rat brain after intraperitoneal injection of N-alkylated analogues". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 7 (4–6): 813–6. doi:10.1016/0278-5846(83)90073-8. PMID 6686713. S2CID 35531794.
- ^ Valtier S, Cody JT (October 1995). "Evaluation of internal standards for the analysis of amphetamine and methamphetamine". Journal of Analytical Toxicology. 19 (6): 375–80. doi:10.1093/jat/19.6.375. PMID 8926730.
- ^ Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL (February 2015). "Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter". Drug Alcohol Depend. 147: 1–19. doi:10.1016/j.drugalcdep.2014.12.005. PMC 4297708. PMID 25548026.
- ^ Beckett AH, Shenoy EV (October 1973). "The effect of N-alkyl chain length of stereochemistry on the absorption, metabolism and during excretion of N-alkylamphetamines in man". J Pharm Pharmacol. 25 (10): 793–799. doi:10.1111/j.2042-7158.1973.tb09943.x. PMID 4151673.
- ^ Coutts RT, Dawson GW, Beckett AH (November 1976). "In vitro metabolism of 1-phenyl-2-(n-propylamino) propane (N-propylamphetamine) by rat liver homogenates". J Pharm Pharmacol. 28 (11): 815–821. doi:10.1111/j.2042-7158.1976.tb04063.x. PMID 11289.
- ^ Fitzgerald LR, Gannon BM, Walther D, Landavazo A, Hiranita T, Blough BE, Baumann MH, Fantegrossi WE (March 2024). "Structure-activity relationships for locomotor stimulant effects and monoamine transporter interactions of substituted amphetamines and cathinones". Neuropharmacology. 245: 109827. doi:10.1016/j.neuropharm.2023.109827. PMC 10842458. PMID 38154512.
Although the number of amphetamine analogues with different amine substituents is relatively low in recreational drug markets (Cho and Segal, 1994), N-methyl and N-ethyl substitutions are sometimes found. Pharmacological activity of amphetamine-type drugs is decreased substantially if the N-alkyl chain is lengthened beyond ethyl, as previous studies show that N-propylamphetamine and N-butylamphetamine are ~4-fold and ~6-fold less potent than amphetamine in rats (Woolverton et al., 1980).
- ^ Woolverton WL, Shybut G, Johanson CE (December 1980). "Structure-activity relationships among some d-N-alkylated amphetamines". Pharmacology, Biochemistry, and Behavior. 13 (6): 869–876. CiteSeerX 10.1.1.687.9187. doi:10.1016/0091-3057(80)90221-x. PMID 7208552. S2CID 25123820.