Picture of the month
The knight's tour is a mathematical chess problem in which the piece called the knight is to visit each square on an otherwise empty chess board exactly once, using only legal moves. It is a special case of the more general Hamiltonian path problem in graph theory. (A closely related non-Hamiltonian problem is that of the longest uncrossed knight's path.) The tour is called closed if the knight ends on a square from which it may legally move to its starting square (thereby forming an endless cycle), and open if not. The tour shown in this animation is open (see also a static image of the completed tour). The exact number of possible open tours is still unknown, but on standard 8 × 8 board there are 26,534,728,821,064 possible closed tours (counting separately any tours that are equivalent by rotation, reflection, or reversing the direction of travel). Although the earliest known solutions to the knight's tour problem date back to the 9th century CE, the first general procedure for completing the knight's tour was Warnsdorff's rule, first described in 1823.
...Archive | Read more... |