Mostafa A. El-Sayed (Arabic: مصطفى السيد) is an Egyptian-American physical chemist, nanoscience researcher, member of the National Academy of Sciences and US National Medal of Science laureate. He is known for the spectroscopy rule named after him, the El-Sayed rule.[2][3][4]

Mostafa El-Sayed
El-Sayed in March 2016
Born
NationalityEgyptian
Alma materAin Shams University
Florida State University
Known forNanotechnology
Spectroscopy
El-Sayed rule
AwardsKing Faisal International Prize 1990
Irving Langmuir Award 2002
National Medal of Science 2007
Glenn T. Seaborg Medal 2009
Priestley Medal 2016
Scientific career
FieldsChemical physicist
InstitutionsGeorgia Institute of Technology
Harvard University
University of California at Los Angeles
Doctoral advisorMichael Kasha[1]

Early life and academic career

edit

El-Sayed was born in Zifta, Egypt and spent his early life in Cairo. He earned his B.Sc. in chemistry from Ain Shams University Faculty of Science, Cairo in 1953.[5] El-Sayed earned his doctoral degree in chemistry from Florida State University working with Michael Kasha, the last student of the legendary G. N. Lewis.[citation needed] While attending graduate school he met and married Janice Jones, his wife of 48 years. He spent time as a post-doctoral researcher at Harvard University, Yale University and the California Institute of Technology before joining the faculty of the University of California at Los Angeles in 1961. In 1994, he retired from UCLA and accepted the position of Julius Brown Chair and Regents Professor of Chemistry and Biochemistry at the Georgia Institute of Technology. He led the Laser Dynamics Lab there until his full retirement in 2020.

El-Sayed is a former editor-in-chief of the Journal of Physical Chemistry (1980–2004).[6][7]

Research

edit
 
Prof. El-Sayed with two students, 2008

El-Sayed's research interests include the use of steady-state and ultra fast laser spectroscopy to understand relaxation, transport and conversion of energy in molecules, in solids, in photosynthetic systems, semiconductor quantum dots and metal nanostructures. The El-Sayed group has also been involved in the development of new techniques such as magnetophotonic selection, picosecond Raman spectroscopy and phosphorescence microwave double resonance spectroscopy. A major focus of his lab is currently on the optical and chemical properties of noble metal nanoparticles and their applications in nanocatalysis, nanophotonics and nanomedicine. His lab is known for the development of the gold nanorod technology. As of 2021, El-Sayed has produced over 1200 publications in refereed journals in the areas of spectroscopy, molecular dynamics and nanoscience, with over 130,000 citations.[8]

Honors

edit

For his work in the area of applying laser spectroscopic techniques to study of properties and behavior on the nanoscale, El-Sayed was elected to the National Academy of Sciences in 1980. In 1989 he received the Tolman Award, and in 2002, he won the Irving Langmuir Award in Chemical Physics. He has been the recipient of the 1990 King Faisal International Prize ("Arabian Nobel Prize") in Sciences, Georgia Tech's highest award, "The Class of 1943 Distinguished Professor", an honorary doctorate of philosophy from the Hebrew University, and several other awards including some from the different American Chemical Society local sections. He was a Sherman Fairchild Distinguished Scholar at the California Institute of Technology and an Alexander von Humboldt Senior U.S. Scientist Awardee. He served as editor-in-chief of the Journal of Physical Chemistry from 1980 to 2004 and has also served as the U.S. editor of the International Reviews in Physical Chemistry. He is a Fellow of the American Academy of Arts and Sciences, a member of the American Physical Society, the American Association for the Advancement of Science and the Third World Academy of Science. Mostafa El-Sayed was awarded the 2007 US National Medal of Science "for his seminal and creative contributions to our understanding of the electronic and optical properties of nanomaterials and to their applications in nanocatalysis and nanomedicine, for his humanitarian efforts of exchange among countries and for his role in developing the scientific leadership of tomorrow."[9] Mostafa was also announced to be the recipient of the 2009 Ahmed Zewail prize in molecular sciences. In 2011, he was listed #17 in Thomson-Reuters listing of the Top Chemists of the Past Decade.[10] Professor El-Sayed also received the 2016 Priestley Medal, the American Chemical Society’s highest honor, for his decades-long contributions to chemistry.[11]

The El-Sayed rule

edit

The rate of intersystem crossing is relatively large if the radiationless transition involves a change of orbital type.

— Mostafa El-Sayed, [12]

This rule pertains to phosphorescence and similar phenomena. Electrons vibrate and resonate around molecules in different modes (electronic state), usually depending on the energy of the system of electrons. This law states that constant-energy flipping between two electronic states happens more readily when the vibrations of the electrons are preserved during the flip: any change in the spin of an electron is compensated by a change in its orbital motion (spin-orbit coupling).

Intersystem crossing (ISC) is a photophysical process involving an isoenergetic radiationless transition between two electronic states having different multiplicities. It often results in a vibrationally excited molecular entity in the lower electronic state, which then usually decays to its lowest molecular vibrational level. ISC is forbidden by rules of conservation of angular momentum. As a consequence, ISC generally occurs on very long time scales. However, the El-Sayed rule states that the rate of intersystem crossing, e.g. from the lowest singlet state to the triplet manifold, is relatively large if the radiationless transition involves a change of molecular orbital type.[13][14] For example, a (π,π*) singlet could transition to a (n,π*) triplet state, but not to a (π,π*) triplet state and vice versa. Formulated by El-Sayed in the 1960s, this rule found in most photochemistry textbooks as well as the IUPAC Gold Book.[15] The rule is useful in understanding phosphorescence, vibrational relaxation, intersystem crossing, internal conversion and lifetimes of excited states in molecules.

Notes

edit
  1. ^ El-Sayed, Mostafa (December 1, 1991). "Michael Kasha - Editorial, Biographical Sketch, Summary of Research Contributions, Research Associates, and Publications list". Journal of Physical Chemistry. 95 (25): 10215-10220. doi:10.1021/j100178a001. Retrieved 5 February 2021.
  2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "El-Sayed rules". doi:10.1351/goldbook.ET07369
  3. ^ David Oxtoby; H. Gillis; Alan Campion (2007). Principles of Modern Chemistry (6 ed.). Cengage Learning. p. 990. ISBN 9780534493660.
  4. ^ "Prof. El-Sayed is in 2017 highly cited researchers list".
  5. ^ He applied for graduate school in the United States and emigrated there. Mostafa Amr El-Sayed
  6. ^ "El-Sayed, Mostafa A." bibalex.org. Archived from the original on January 20, 2011. Retrieved 20 February 2015.
  7. ^ Chemical & Engineering News Vol. 86 No. 35, 1 Sept. 2008, "Chemists Receive Top Awards", p. 10]
  8. ^ ""Mostafa A. El-Sayed"". Google Scholar. Retrieved 5 February 2021.
  9. ^ "The President's National Medal of Science: Recipient Details | NSF - National Science Foundation". www.nsf.gov. Retrieved 2017-10-27.
  10. ^ Mostafa El-Sayed College of Sciences, Georgia Institute of Technology. Accessed 27 November 2014
  11. ^ Jacoby, Mitch. "Mostafa El-Sayed Wins Priestley Medal | Chemical & Engineering News". cen.acs.org. Retrieved 2016-08-01.
  12. ^ Braslavsky, S. E. (1 January 2007). "Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)". Pure and Applied Chemistry. 79 (3): 293–465. doi:10.1351/pac200779030293. S2CID 96601716.
  13. ^ Baba, Masaaki (March 14, 2011). "Intersystem Crossing in the 1npi* and 1pipi* States". Journal of Physical Chemistry A. 115 (34): 9514–9519. Bibcode:2011JPCA..115.9514B. doi:10.1021/jp111892y. PMID 21401029. Retrieved 5 February 2021.
  14. ^ Soto, Juan; Otero, Juan O. (October 1, 2019). "Conservation of El-Sayed's Rules in the Photolysis of Phenyl Azide: Two Independent Decomposition Doorways for Alternate Direct Formation of Triplet and Singlet Phenylnitrene". Journal of Physical Chemistry A. 123 (42): 9053–9060. Bibcode:2019JPCA..123.9053S. doi:10.1021/acs.jpca.9b06915. PMID 31573200. S2CID 203624906. Retrieved 5 February 2021.
  15. ^ McNaught, A.D.; Wilkinson, A. (1997). IUPAC Compendium of Chemical Terminology (the "Gold Book") (2nd ed.). Oxford: Blackwell Scientific Publications. p. 331. ISBN 0-9678550-9-8. Retrieved 5 February 2021.

References

edit
  • El-Sayed, M.A., Acc. Chem. Res. 1968,1,8.
  • Lower, S.K.; El-Sayed, M.A., Chem. Rev. 1966,66,199
  • Mostafa Amr El-Sayed (8 May 1933 – Egyptian-American, b. Zifta, Egypt)
  • Biographical References: McMurray, Emily J. (ed.), Notable Twientieth-Century Scientists, Gale Research, Inc.: New York, 1995.
edit