In statistics , the matrix variate beta distribution is a generalization of the beta distribution . If
U
{\displaystyle U}
is a
p
×
p
{\displaystyle p\times p}
positive definite matrix with a matrix variate beta distribution, and
a
,
b
>
(
p
−
1
)
/
2
{\displaystyle a,b>(p-1)/2}
are real parameters, we write
U
∼
B
p
(
a
,
b
)
{\displaystyle U\sim B_{p}\left(a,b\right)}
(sometimes
B
p
I
(
a
,
b
)
{\displaystyle B_{p}^{I}\left(a,b\right)}
). The probability density function for
U
{\displaystyle U}
is:
{
β
p
(
a
,
b
)
}
−
1
det
(
U
)
a
−
(
p
+
1
)
/
2
det
(
I
p
−
U
)
b
−
(
p
+
1
)
/
2
.
{\displaystyle \left\{\beta _{p}\left(a,b\right)\right\}^{-1}\det \left(U\right)^{a-(p+1)/2}\det \left(I_{p}-U\right)^{b-(p+1)/2}.}
Matrix variate beta distribution Notation
B
p
(
a
,
b
)
{\displaystyle {\rm {B}}_{p}(a,b)}
Parameters
a
,
b
{\displaystyle a,b}
Support
p
×
p
{\displaystyle p\times p}
matrices with both
U
{\displaystyle U}
and
I
p
−
U
{\displaystyle I_{p}-U}
positive definite PDF
{
β
p
(
a
,
b
)
}
−
1
det
(
U
)
a
−
(
p
+
1
)
/
2
det
(
I
p
−
U
)
b
−
(
p
+
1
)
/
2
.
{\displaystyle \left\{\beta _{p}\left(a,b\right)\right\}^{-1}\det \left(U\right)^{a-(p+1)/2}\det \left(I_{p}-U\right)^{b-(p+1)/2}.}
CDF
1
F
1
(
a
;
a
+
b
;
i
Z
)
{\displaystyle {}_{1}F_{1}\left(a;a+b;iZ\right)}
Here
β
p
(
a
,
b
)
{\displaystyle \beta _{p}\left(a,b\right)}
is the multivariate beta function :
β
p
(
a
,
b
)
=
Γ
p
(
a
)
Γ
p
(
b
)
Γ
p
(
a
+
b
)
{\displaystyle \beta _{p}\left(a,b\right)={\frac {\Gamma _{p}\left(a\right)\Gamma _{p}\left(b\right)}{\Gamma _{p}\left(a+b\right)}}}
where
Γ
p
(
a
)
{\displaystyle \Gamma _{p}\left(a\right)}
is the multivariate gamma function given by
Γ
p
(
a
)
=
π
p
(
p
−
1
)
/
4
∏
i
=
1
p
Γ
(
a
−
(
i
−
1
)
/
2
)
.
{\displaystyle \Gamma _{p}\left(a\right)=\pi ^{p(p-1)/4}\prod _{i=1}^{p}\Gamma \left(a-(i-1)/2\right).}
Distribution of matrix inverse
edit
If
U
∼
B
p
(
a
,
b
)
{\displaystyle U\sim B_{p}(a,b)}
then the density of
X
=
U
−
1
{\displaystyle X=U^{-1}}
is given by
1
β
p
(
a
,
b
)
det
(
X
)
−
(
a
+
b
)
det
(
X
−
I
p
)
b
−
(
p
+
1
)
/
2
{\displaystyle {\frac {1}{\beta _{p}\left(a,b\right)}}\det(X)^{-(a+b)}\det \left(X-I_{p}\right)^{b-(p+1)/2}}
provided that
X
>
I
p
{\displaystyle X>I_{p}}
and
a
,
b
>
(
p
−
1
)
/
2
{\displaystyle a,b>(p-1)/2}
.
If
U
∼
B
p
(
a
,
b
)
{\displaystyle U\sim B_{p}(a,b)}
and
H
{\displaystyle H}
is a constant
p
×
p
{\displaystyle p\times p}
orthogonal matrix , then
H
U
H
T
∼
B
(
a
,
b
)
.
{\displaystyle HUH^{T}\sim B(a,b).}
Also, if
H
{\displaystyle H}
is a random orthogonal
p
×
p
{\displaystyle p\times p}
matrix which is independent of
U
{\displaystyle U}
, then
H
U
H
T
∼
B
p
(
a
,
b
)
{\displaystyle HUH^{T}\sim B_{p}(a,b)}
, distributed independently of
H
{\displaystyle H}
.
If
A
{\displaystyle A}
is any constant
q
×
p
{\displaystyle q\times p}
,
q
≤
p
{\displaystyle q\leq p}
matrix of rank
q
{\displaystyle q}
, then
A
U
A
T
{\displaystyle AUA^{T}}
has a generalized matrix variate beta distribution , specifically
A
U
A
T
∼
G
B
q
(
a
,
b
;
A
A
T
,
0
)
{\displaystyle AUA^{T}\sim GB_{q}\left(a,b;AA^{T},0\right)}
.
Partitioned matrix results
edit
If
U
∼
B
p
(
a
,
b
)
{\displaystyle U\sim B_{p}\left(a,b\right)}
and we partition
U
{\displaystyle U}
as
U
=
[
U
11
U
12
U
21
U
22
]
{\displaystyle U={\begin{bmatrix}U_{11}&U_{12}\\U_{21}&U_{22}\end{bmatrix}}}
where
U
11
{\displaystyle U_{11}}
is
p
1
×
p
1
{\displaystyle p_{1}\times p_{1}}
and
U
22
{\displaystyle U_{22}}
is
p
2
×
p
2
{\displaystyle p_{2}\times p_{2}}
, then defining the Schur complement
U
22
⋅
1
{\displaystyle U_{22\cdot 1}}
as
U
22
−
U
21
U
11
−
1
U
12
{\displaystyle U_{22}-U_{21}{U_{11}}^{-1}U_{12}}
gives the following results:
U
11
{\displaystyle U_{11}}
is independent of
U
22
⋅
1
{\displaystyle U_{22\cdot 1}}
U
11
∼
B
p
1
(
a
,
b
)
{\displaystyle U_{11}\sim B_{p_{1}}\left(a,b\right)}
U
22
⋅
1
∼
B
p
2
(
a
−
p
1
/
2
,
b
)
{\displaystyle U_{22\cdot 1}\sim B_{p_{2}}\left(a-p_{1}/2,b\right)}
U
21
∣
U
11
,
U
22
⋅
1
{\displaystyle U_{21}\mid U_{11},U_{22\cdot 1}}
has an inverted matrix variate t distribution , specifically
U
21
∣
U
11
,
U
22
⋅
1
∼
I
T
p
2
,
p
1
(
2
b
−
p
+
1
,
0
,
I
p
2
−
U
22
⋅
1
,
U
11
(
I
p
1
−
U
11
)
)
.
{\displaystyle U_{21}\mid U_{11},U_{22\cdot 1}\sim IT_{p_{2},p_{1}}\left(2b-p+1,0,I_{p_{2}}-U_{22\cdot 1},U_{11}(I_{p_{1}}-U_{11})\right).}
Mitra proves the following theorem which illustrates a useful property of the matrix variate beta distribution. Suppose
S
1
,
S
2
{\displaystyle S_{1},S_{2}}
are independent Wishart
p
×
p
{\displaystyle p\times p}
matrices
S
1
∼
W
p
(
n
1
,
Σ
)
,
S
2
∼
W
p
(
n
2
,
Σ
)
{\displaystyle S_{1}\sim W_{p}(n_{1},\Sigma ),S_{2}\sim W_{p}(n_{2},\Sigma )}
. Assume that
Σ
{\displaystyle \Sigma }
is positive definite and that
n
1
+
n
2
≥
p
{\displaystyle n_{1}+n_{2}\geq p}
. If
U
=
S
−
1
/
2
S
1
(
S
−
1
/
2
)
T
,
{\displaystyle U=S^{-1/2}S_{1}\left(S^{-1/2}\right)^{T},}
where
S
=
S
1
+
S
2
{\displaystyle S=S_{1}+S_{2}}
, then
U
{\displaystyle U}
has a matrix variate beta distribution
B
p
(
n
1
/
2
,
n
2
/
2
)
{\displaystyle B_{p}(n_{1}/2,n_{2}/2)}
. In particular,
U
{\displaystyle U}
is independent of
Σ
{\displaystyle \Sigma }
.
Gupta, A. K.; Nagar, D. K. (1999). Matrix Variate Distributions . Chapman and Hall. ISBN 1-58488-046-5 .
Khatri, C. G. (1992). "Matrix Beta Distribution with Applications to Linear Models, Testing, Skewness and Kurtosis". In Venugopal, N. (ed.). Contributions to Stochastics . John Wiley & Sons. pp. 26– 34. ISBN 0-470-22050-3 .
Mitra, S. K. (1970). "A density-free approach to matrix variate beta distribution". The Indian Journal of Statistics . Series A (1961–2002). 32 (1): 81– 88. JSTOR 25049638 .