Christoffel symbols, covariant derivative
edit
In a smooth coordinate chart , the Christoffel symbols of the first kind are given by
Γ
k
i
j
=
1
2
(
∂
∂
x
j
g
k
i
+
∂
∂
x
i
g
k
j
−
∂
∂
x
k
g
i
j
)
=
1
2
(
g
k
i
,
j
+
g
k
j
,
i
−
g
i
j
,
k
)
,
{\displaystyle \Gamma _{kij}={\frac {1}{2}}\left({\frac {\partial }{\partial x^{j}}}g_{ki}+{\frac {\partial }{\partial x^{i}}}g_{kj}-{\frac {\partial }{\partial x^{k}}}g_{ij}\right)={\frac {1}{2}}\left(g_{ki,j}+g_{kj,i}-g_{ij,k}\right)\,,}
and the Christoffel symbols of the second kind by
Γ
m
i
j
=
g
m
k
Γ
k
i
j
=
1
2
g
m
k
(
∂
∂
x
j
g
k
i
+
∂
∂
x
i
g
k
j
−
∂
∂
x
k
g
i
j
)
=
1
2
g
m
k
(
g
k
i
,
j
+
g
k
j
,
i
−
g
i
j
,
k
)
.
{\displaystyle {\begin{aligned}\Gamma ^{m}{}_{ij}&=g^{mk}\Gamma _{kij}\\&={\frac {1}{2}}\,g^{mk}\left({\frac {\partial }{\partial x^{j}}}g_{ki}+{\frac {\partial }{\partial x^{i}}}g_{kj}-{\frac {\partial }{\partial x^{k}}}g_{ij}\right)={\frac {1}{2}}\,g^{mk}\left(g_{ki,j}+g_{kj,i}-g_{ij,k}\right)\,.\end{aligned}}}
Here
g
i
j
{\displaystyle g^{ij}}
is the inverse matrix to the metric tensor
g
i
j
{\displaystyle g_{ij}}
. In other words,
δ
i
j
=
g
i
k
g
k
j
{\displaystyle \delta ^{i}{}_{j}=g^{ik}g_{kj}}
and thus
n
=
δ
i
i
=
g
i
i
=
g
i
j
g
i
j
{\displaystyle n=\delta ^{i}{}_{i}=g^{i}{}_{i}=g^{ij}g_{ij}}
is the dimension of the manifold .
Christoffel symbols satisfy the symmetry relations
Γ
k
i
j
=
Γ
k
j
i
{\displaystyle \Gamma _{kij}=\Gamma _{kji}}
or, respectively,
Γ
i
j
k
=
Γ
i
k
j
,
{\displaystyle \Gamma ^{i}{}_{jk}=\Gamma ^{i}{}_{kj},}
the second of which is equivalent to the torsion-freeness of the Levi-Civita connection .
The contracting relations on the Christoffel symbols are given by
Γ
i
k
i
=
1
2
g
i
m
∂
g
i
m
∂
x
k
=
1
2
g
∂
g
∂
x
k
=
∂
log
|
g
|
∂
x
k
{\displaystyle \Gamma ^{i}{}_{ki}={\frac {1}{2}}g^{im}{\frac {\partial g_{im}}{\partial x^{k}}}={\frac {1}{2g}}{\frac {\partial g}{\partial x^{k}}}={\frac {\partial \log {\sqrt {|g|}}}{\partial x^{k}}}}
and
g
k
ℓ
Γ
i
k
ℓ
=
−
1
|
g
|
∂
(
|
g
|
g
i
k
)
∂
x
k
{\displaystyle g^{k\ell }\Gamma ^{i}{}_{k\ell }={\frac {-1}{\sqrt {|g|}}}\;{\frac {\partial \left({\sqrt {|g|}}\,g^{ik}\right)}{\partial x^{k}}}}
where |g | is the absolute value of the determinant of the matrix of scalar coefficients of the metric tensor
g
i
k
{\displaystyle g_{ik}}
. These are useful when dealing with divergences and Laplacians (see below).
The covariant derivative of a vector field with components
v
i
{\displaystyle v^{i}}
is given by:
v
i
;
j
=
(
∇
j
v
)
i
=
∂
v
i
∂
x
j
+
Γ
i
j
k
v
k
{\displaystyle v^{i}{}_{;j}=(\nabla _{j}v)^{i}={\frac {\partial v^{i}}{\partial x^{j}}}+\Gamma ^{i}{}_{jk}v^{k}}
and similarly the covariant derivative of a
(
0
,
1
)
{\displaystyle (0,1)}
-tensor field with components
v
i
{\displaystyle v_{i}}
is given by:
v
i
;
j
=
(
∇
j
v
)
i
=
∂
v
i
∂
x
j
−
Γ
k
i
j
v
k
{\displaystyle v_{i;j}=(\nabla _{j}v)_{i}={\frac {\partial v_{i}}{\partial x^{j}}}-\Gamma ^{k}{}_{ij}v_{k}}
For a
(
2
,
0
)
{\displaystyle (2,0)}
-tensor field with components
v
i
j
{\displaystyle v^{ij}}
this becomes
v
i
j
;
k
=
∇
k
v
i
j
=
∂
v
i
j
∂
x
k
+
Γ
i
k
ℓ
v
ℓ
j
+
Γ
j
k
ℓ
v
i
ℓ
{\displaystyle v^{ij}{}_{;k}=\nabla _{k}v^{ij}={\frac {\partial v^{ij}}{\partial x^{k}}}+\Gamma ^{i}{}_{k\ell }v^{\ell j}+\Gamma ^{j}{}_{k\ell }v^{i\ell }}
and likewise for tensors with more indices.
The covariant derivative of a function (scalar)
ϕ
{\displaystyle \phi }
is just its usual differential:
∇
i
ϕ
=
ϕ
;
i
=
ϕ
,
i
=
∂
ϕ
∂
x
i
{\displaystyle \nabla _{i}\phi =\phi _{;i}=\phi _{,i}={\frac {\partial \phi }{\partial x^{i}}}}
Because the Levi-Civita connection is metric-compatible, the covariant derivative of the metric vanishes,
(
∇
k
g
)
i
j
=
0
,
(
∇
k
g
)
i
j
=
0
{\displaystyle (\nabla _{k}g)_{ij}=0,\quad (\nabla _{k}g)^{ij}=0}
as well as the covariant derivatives of the metric's determinant (and volume element)
∇
k
|
g
|
=
0
{\displaystyle \nabla _{k}{\sqrt {|g|}}=0}
The geodesic
X
(
t
)
{\displaystyle X(t)}
starting at the origin with initial speed
v
i
{\displaystyle v^{i}}
has Taylor expansion in the chart:
X
(
t
)
i
=
t
v
i
−
t
2
2
Γ
i
j
k
v
j
v
k
+
O
(
t
3
)
{\displaystyle X(t)^{i}=tv^{i}-{\frac {t^{2}}{2}}\Gamma ^{i}{}_{jk}v^{j}v^{k}+O(t^{3})}
R
i
j
k
l
=
∂
Γ
j
k
l
∂
x
i
−
∂
Γ
i
k
l
∂
x
j
+
(
Γ
j
k
p
Γ
i
p
l
−
Γ
i
k
p
Γ
j
p
l
)
{\displaystyle {R_{ijk}}^{l}={\frac {\partial \Gamma _{jk}^{l}}{\partial x^{i}}}-{\frac {\partial \Gamma _{ik}^{l}}{\partial x^{j}}}+{\big (}\Gamma _{jk}^{p}\Gamma _{ip}^{l}-\Gamma _{ik}^{p}\Gamma _{jp}^{l}{\big )}}
R
(
u
,
v
)
w
=
∇
u
∇
v
w
−
∇
v
∇
u
w
−
∇
[
u
,
v
]
w
{\displaystyle R(u,v)w=\nabla _{u}\nabla _{v}w-\nabla _{v}\nabla _{u}w-\nabla _{[u,v]}w}
R
j
k
l
i
=
∂
Γ
l
j
i
∂
x
k
−
∂
Γ
k
j
i
∂
x
l
+
(
Γ
k
p
i
Γ
l
j
p
−
Γ
l
p
i
Γ
k
j
p
)
{\displaystyle {R_{jkl}^{i}}={\frac {\partial \Gamma _{lj}^{i}}{\partial x^{k}}}-{\frac {\partial \Gamma _{kj}^{i}}{\partial x^{l}}}+{\big (}\Gamma _{kp}^{i}\Gamma _{lj}^{p}-\Gamma _{lp}^{i}\Gamma _{kj}^{p}{\big )}}
R
i
k
=
R
j
i
k
j
{\displaystyle R_{ik}={R_{jik}}^{j}}
Ric
(
v
,
w
)
=
tr
(
u
↦
R
(
u
,
v
)
w
)
{\displaystyle \operatorname {Ric} (v,w)=\operatorname {tr} (u\mapsto R(u,v)w)}
R
=
g
i
k
R
i
k
{\displaystyle R=g^{ik}R_{ik}}
R
=
tr
g
Ric
{\displaystyle R=\operatorname {tr} _{g}\operatorname {Ric} }
Traceless Ricci tensor
edit
Q
i
k
=
R
i
k
−
1
n
R
g
i
k
{\displaystyle Q_{ik}=R_{ik}-{\frac {1}{n}}Rg_{ik}}
Q
(
u
,
v
)
=
Ric
(
u
,
v
)
−
1
n
R
g
(
u
,
v
)
{\displaystyle Q(u,v)=\operatorname {Ric} (u,v)-{\frac {1}{n}}Rg(u,v)}
(4,0) Riemann curvature tensor
edit
R
i
j
k
l
=
R
i
j
k
p
g
p
l
{\displaystyle R_{ijkl}={R_{ijk}}^{p}g_{pl}}
Rm
(
u
,
v
,
w
,
x
)
=
g
(
R
(
u
,
v
)
w
,
x
)
{\displaystyle \operatorname {Rm} (u,v,w,x)=g{\big (}R(u,v)w,x{\big )}}
W
i
j
k
l
=
R
i
j
k
l
−
1
n
(
n
−
1
)
R
(
g
i
k
g
j
l
−
g
i
l
g
j
k
)
−
1
n
−
2
(
Q
i
k
g
j
l
−
Q
j
k
g
i
l
−
Q
i
l
g
j
k
+
Q
j
l
g
i
k
)
{\displaystyle W_{ijkl}=R_{ijkl}-{\frac {1}{n(n-1)}}R{\big (}g_{ik}g_{jl}-g_{il}g_{jk}{\big )}-{\frac {1}{n-2}}{\big (}Q_{ik}g_{jl}-Q_{jk}g_{il}-Q_{il}g_{jk}+Q_{jl}g_{ik}{\big )}}
W
(
u
,
v
,
w
,
x
)
=
Rm
(
u
,
v
,
w
,
x
)
−
1
n
(
n
−
1
)
R
(
g
(
u
,
w
)
g
(
v
,
x
)
−
g
(
u
,
x
)
g
(
v
,
w
)
)
−
1
n
−
2
(
Q
(
u
,
w
)
g
(
v
,
x
)
−
Q
(
v
,
w
)
g
(
u
,
x
)
−
Q
(
u
,
x
)
g
(
v
,
w
)
+
Q
(
v
,
x
)
g
(
u
,
w
)
)
{\displaystyle W(u,v,w,x)=\operatorname {Rm} (u,v,w,x)-{\frac {1}{n(n-1)}}R{\big (}g(u,w)g(v,x)-g(u,x)g(v,w){\big )}-{\frac {1}{n-2}}{\big (}Q(u,w)g(v,x)-Q(v,w)g(u,x)-Q(u,x)g(v,w)+Q(v,x)g(u,w){\big )}}
G
i
k
=
R
i
k
−
1
2
R
g
i
k
{\displaystyle G_{ik}=R_{ik}-{\frac {1}{2}}Rg_{ik}}
G
(
u
,
v
)
=
Ric
(
u
,
v
)
−
1
2
R
g
(
u
,
v
)
{\displaystyle G(u,v)=\operatorname {Ric} (u,v)-{\frac {1}{2}}Rg(u,v)}
R
i
j
k
l
=
−
R
j
i
k
l
{\displaystyle {R_{ijk}}^{l}=-{R_{jik}}^{l}}
R
i
j
k
l
=
−
R
j
i
k
l
=
−
R
i
j
l
k
=
R
k
l
i
j
{\displaystyle R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}}
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero:
W
i
j
k
l
=
−
W
j
i
k
l
=
−
W
i
j
l
k
=
W
k
l
i
j
{\displaystyle W_{ijkl}=-W_{jikl}=-W_{ijlk}=W_{klij}}
g
i
l
W
i
j
k
l
=
0
{\displaystyle g^{il}W_{ijkl}=0}
The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
R
j
k
=
R
k
j
{\displaystyle R_{jk}=R_{kj}}
G
j
k
=
G
k
j
{\displaystyle G_{jk}=G_{kj}}
Q
j
k
=
Q
k
j
{\displaystyle Q_{jk}=Q_{kj}}
First Bianchi identity
edit
R
i
j
k
l
+
R
j
k
i
l
+
R
k
i
j
l
=
0
{\displaystyle R_{ijkl}+R_{jkil}+R_{kijl}=0}
W
i
j
k
l
+
W
j
k
i
l
+
W
k
i
j
l
=
0
{\displaystyle W_{ijkl}+W_{jkil}+W_{kijl}=0}
Second Bianchi identity
edit
∇
p
R
i
j
k
l
+
∇
i
R
j
p
k
l
+
∇
j
R
p
i
k
l
=
0
{\displaystyle \nabla _{p}R_{ijkl}+\nabla _{i}R_{jpkl}+\nabla _{j}R_{pikl}=0}
(
∇
u
Rm
)
(
v
,
w
,
x
,
y
)
+
(
∇
v
Rm
)
(
w
,
u
,
x
,
y
)
+
(
∇
w
Rm
)
(
u
,
v
,
x
,
y
)
=
0
{\displaystyle (\nabla _{u}\operatorname {Rm} )(v,w,x,y)+(\nabla _{v}\operatorname {Rm} )(w,u,x,y)+(\nabla _{w}\operatorname {Rm} )(u,v,x,y)=0}
Contracted second Bianchi identity
edit
∇
j
R
p
k
−
∇
p
R
j
k
=
∇
l
R
j
p
k
l
{\displaystyle \nabla _{j}R_{pk}-\nabla _{p}R_{jk}=\nabla ^{l}R_{jpkl}}
(
∇
u
Ric
)
(
v
,
w
)
−
(
∇
v
Ric
)
(
u
,
w
)
=
−
tr
g
(
(
x
,
y
)
↦
(
∇
x
Rm
)
(
u
,
v
,
w
,
y
)
)
{\displaystyle (\nabla _{u}\operatorname {Ric} )(v,w)-(\nabla _{v}\operatorname {Ric} )(u,w)=-\operatorname {tr} _{g}{\big (}(x,y)\mapsto (\nabla _{x}\operatorname {Rm} )(u,v,w,y){\big )}}
Twice-contracted second Bianchi identity
edit
g
p
q
∇
p
R
q
k
=
1
2
∇
k
R
{\displaystyle g^{pq}\nabla _{p}R_{qk}={\frac {1}{2}}\nabla _{k}R}
div
g
Ric
=
1
2
d
R
{\displaystyle \operatorname {div} _{g}\operatorname {Ric} ={\frac {1}{2}}dR}
Equivalently:
g
p
q
∇
p
G
q
k
=
0
{\displaystyle g^{pq}\nabla _{p}G_{qk}=0}
div
g
G
=
0
{\displaystyle \operatorname {div} _{g}G=0}
If
X
{\displaystyle X}
is a vector field then
∇
i
∇
j
X
k
−
∇
j
∇
i
X
k
=
−
R
i
j
p
k
X
p
,
{\displaystyle \nabla _{i}\nabla _{j}X^{k}-\nabla _{j}\nabla _{i}X^{k}=-{R_{ijp}}^{k}X^{p},}
which is just the definition of the Riemann tensor. If
ω
{\displaystyle \omega }
is a one-form then
∇
i
∇
j
ω
k
−
∇
j
∇
i
ω
k
=
R
i
j
k
p
ω
p
.
{\displaystyle \nabla _{i}\nabla _{j}\omega _{k}-\nabla _{j}\nabla _{i}\omega _{k}={R_{ijk}}^{p}\omega _{p}.}
More generally, if
T
{\displaystyle T}
is a (0,k)-tensor field then
∇
i
∇
j
T
l
1
⋯
l
k
−
∇
j
∇
i
T
l
1
⋯
l
k
=
R
i
j
l
1
p
T
p
l
2
⋯
l
k
+
⋯
+
R
i
j
l
k
p
T
l
1
⋯
l
k
−
1
p
.
{\displaystyle \nabla _{i}\nabla _{j}T_{l_{1}\cdots l_{k}}-\nabla _{j}\nabla _{i}T_{l_{1}\cdots l_{k}}={R_{ijl_{1}}}^{p}T_{pl_{2}\cdots l_{k}}+\cdots +{R_{ijl_{k}}}^{p}T_{l_{1}\cdots l_{k-1}p}.}
A classical result says that
W
=
0
{\displaystyle W=0}
if and only if
(
M
,
g
)
{\displaystyle (M,g)}
is locally conformally flat, i.e. if and only if
M
{\displaystyle M}
can be covered by smooth coordinate charts relative to which the metric tensor is of the form
g
i
j
=
e
φ
δ
i
j
{\displaystyle g_{ij}=e^{\varphi }\delta _{ij}}
for some function
φ
{\displaystyle \varphi }
on the chart.
Gradient, divergence, Laplace–Beltrami operator
edit
Kulkarni–Nomizu product
edit
In an inertial frame
edit
Let
g
{\displaystyle g}
be a Riemannian or pseudo-Riemanniann metric on a smooth manifold
M
{\displaystyle M}
, and
φ
{\displaystyle \varphi }
a smooth real-valued function on
M
{\displaystyle M}
. Then
g
~
=
e
2
φ
g
{\displaystyle {\tilde {g}}=e^{2\varphi }g}
is also a Riemannian metric on
M
{\displaystyle M}
. We say that
g
~
{\displaystyle {\tilde {g}}}
is (pointwise) conformal to
g
{\displaystyle g}
. Evidently, conformality of metrics is an equivalence relation. Here are some formulas for conformal changes in tensors associated with the metric. (Quantities marked with a tilde will be associated with
g
~
{\displaystyle {\tilde {g}}}
, while those unmarked with such will be associated with
g
{\displaystyle g}
.)
Levi-Civita connection
edit
Γ
~
i
j
k
=
Γ
i
j
k
+
∂
φ
∂
x
i
δ
j
k
+
∂
φ
∂
x
j
δ
i
k
−
∂
φ
∂
x
l
g
l
k
g
i
j
{\displaystyle {\widetilde {\Gamma }}_{ij}^{k}=\Gamma _{ij}^{k}+{\frac {\partial \varphi }{\partial x^{i}}}\delta _{j}^{k}+{\frac {\partial \varphi }{\partial x^{j}}}\delta _{i}^{k}-{\frac {\partial \varphi }{\partial x^{l}}}g^{lk}g_{ij}}
∇
~
X
Y
=
∇
X
Y
+
d
φ
(
X
)
Y
+
d
φ
(
Y
)
X
−
g
(
X
,
Y
)
∇
φ
{\displaystyle {\widetilde {\nabla }}_{X}Y=\nabla _{X}Y+d\varphi (X)Y+d\varphi (Y)X-g(X,Y)\nabla \varphi }
(4,0) Riemann curvature tensor
edit
R
~
i
j
k
l
=
e
2
φ
R
i
j
k
l
+
e
2
φ
(
g
i
k
T
j
l
+
g
j
l
T
i
k
−
g
i
l
T
j
k
−
g
j
k
T
i
l
)
{\displaystyle {\widetilde {R}}_{ijkl}=e^{2\varphi }R_{ijkl}+e^{2\varphi }{\big (}g_{ik}T_{jl}+g_{jl}T_{ik}-g_{il}T_{jk}-g_{jk}T_{il}{\big )}}
where
T
i
j
=
∇
i
∇
j
φ
−
∇
i
φ
∇
j
φ
+
1
2
|
d
φ
|
2
g
i
j
{\displaystyle T_{ij}=\nabla _{i}\nabla _{j}\varphi -\nabla _{i}\varphi \nabla _{j}\varphi +{\frac {1}{2}}|d\varphi |^{2}g_{ij}}
Using the Kulkarni–Nomizu product :
Rm
~
=
e
2
φ
Rm
+
e
2
φ
g
∧
◯
(
Hess
φ
−
d
φ
⊗
d
φ
+
1
2
|
d
φ
|
2
g
)
{\displaystyle {\widetilde {\operatorname {Rm} }}=e^{2\varphi }\operatorname {Rm} +e^{2\varphi }g{~\wedge \!\!\!\!\!\!\!\!\;\bigcirc ~}\left(\operatorname {Hess} \varphi -d\varphi \otimes d\varphi +{\frac {1}{2}}|d\varphi |^{2}g\right)}
R
~
i
j
=
R
i
j
−
(
n
−
2
)
(
∇
i
∇
j
φ
−
∇
i
φ
∇
j
φ
)
−
(
Δ
φ
+
(
n
−
2
)
|
d
φ
|
2
)
g
i
j
{\displaystyle {\widetilde {R}}_{ij}=R_{ij}-(n-2){\big (}\nabla _{i}\nabla _{j}\varphi -\nabla _{i}\varphi \nabla _{j}\varphi {\big )}-{\big (}\Delta \varphi +(n-2)|d\varphi |^{2}{\big )}g_{ij}}
Ric
~
=
Ric
−
(
n
−
2
)
(
Hess
φ
−
d
φ
⊗
d
φ
)
−
(
Δ
φ
+
(
n
−
2
)
|
d
φ
|
2
)
g
{\displaystyle {\widetilde {\operatorname {Ric} }}=\operatorname {Ric} -(n-2){\big (}\operatorname {Hess} \varphi -d\varphi \otimes d\varphi {\big )}-{\big (}\Delta \varphi +(n-2)|d\varphi |^{2}{\big )}g}
R
~
=
e
−
2
φ
R
−
2
(
n
−
1
)
e
−
2
φ
Δ
φ
−
(
n
−
2
)
(
n
−
1
)
e
−
2
φ
|
d
φ
|
2
{\displaystyle {\widetilde {R}}=e^{-2\varphi }R-2(n-1)e^{-2\varphi }\Delta \varphi -(n-2)(n-1)e^{-2\varphi }|d\varphi |^{2}}
if
n
≠
2
{\displaystyle n\neq 2}
this can be written
R
~
=
e
−
2
φ
[
R
−
4
(
n
−
1
)
(
n
−
2
)
e
−
(
n
−
2
)
φ
/
2
Δ
(
e
(
n
−
2
)
φ
/
2
)
]
{\displaystyle {\tilde {R}}=e^{-2\varphi }\left[R-{\frac {4(n-1)}{(n-2)}}e^{-(n-2)\varphi /2}\Delta \left(e^{(n-2)\varphi /2}\right)\right]}
Traceless Ricci tensor
edit
R
~
i
j
−
1
n
R
~
g
~
i
j
=
R
i
j
−
1
n
R
g
i
j
−
(
n
−
2
)
(
∇
i
∇
j
φ
−
∇
i
φ
∇
j
φ
)
+
(
n
−
2
)
n
(
Δ
φ
−
|
d
φ
|
2
)
g
i
j
{\displaystyle {\widetilde {R}}_{ij}-{\frac {1}{n}}{\widetilde {R}}{\widetilde {g}}_{ij}=R_{ij}-{\frac {1}{n}}Rg_{ij}-(n-2){\big (}\nabla _{i}\nabla _{j}\varphi -\nabla _{i}\varphi \nabla _{j}\varphi {\big )}+{\frac {(n-2)}{n}}{\big (}\Delta \varphi -|d\varphi |^{2}{\big )}g_{ij}}
Ric
~
−
1
n
R
~
g
~
=
Ric
−
1
n
R
g
−
(
n
−
2
)
(
Hess
φ
−
d
φ
⊗
d
φ
)
+
(
n
−
2
)
n
(
Δ
φ
−
|
d
φ
|
2
)
g
{\displaystyle {\widetilde {\operatorname {Ric} }}-{\frac {1}{n}}{\widetilde {R}}{\widetilde {g}}=\operatorname {Ric} -{\frac {1}{n}}Rg-(n-2){\big (}\operatorname {Hess} \varphi -d\varphi \otimes d\varphi {\big )}+{\frac {(n-2)}{n}}{\big (}\Delta \varphi -|d\varphi |^{2}{\big )}g}
(3,1) Weyl curvature
edit
W
~
i
j
k
l
=
W
i
j
k
l
{\displaystyle {{\widetilde {W}}_{ijk}}^{l}={W_{ijk}}^{l}}
W
~
(
X
,
Y
,
Z
)
=
W
(
X
,
Y
,
Z
)
{\displaystyle {\widetilde {W}}(X,Y,Z)=W(X,Y,Z)}
for any vector fields
X
,
Y
,
Z
{\displaystyle X,Y,Z}
det
g
~
=
e
n
φ
det
g
{\displaystyle {\sqrt {\det {\widetilde {g}}}}=e^{n\varphi }{\sqrt {\det g}}}
d
μ
g
~
=
e
n
φ
d
μ
g
{\displaystyle d\mu _{\widetilde {g}}=e^{n\varphi }\,d\mu _{g}}
∗
~
i
1
⋯
i
n
−
p
j
1
⋯
j
p
=
e
(
n
−
2
p
)
φ
∗
i
1
⋯
i
n
−
p
j
1
⋯
j
p
{\displaystyle {\widetilde {\ast }}_{i_{1}\cdots i_{n-p}}^{j_{1}\cdots j_{p}}=e^{(n-2p)\varphi }\ast _{i_{1}\cdots i_{n-p}}^{j_{1}\cdots j_{p}}}
∗
~
=
e
(
n
−
2
p
)
φ
∗
{\displaystyle {\widetilde {\ast }}=e^{(n-2p)\varphi }\ast }
d
∗
~
j
1
⋯
j
p
−
1
i
1
⋯
i
p
=
e
−
2
φ
(
d
∗
)
j
1
⋯
j
p
−
1
i
1
⋯
i
p
−
(
n
−
2
p
)
e
−
2
φ
∇
i
1
φ
δ
j
1
i
2
⋯
δ
j
p
−
1
i
p
{\displaystyle {\widetilde {d^{\ast }}}_{j_{1}\cdots j_{p-1}}^{i_{1}\cdots i_{p}}=e^{-2\varphi }(d^{\ast })_{j_{1}\cdots j_{p-1}}^{i_{1}\cdots i_{p}}-(n-2p)e^{-2\varphi }\nabla ^{i_{1}}\varphi \delta _{j_{1}}^{i_{2}}\cdots \delta _{j_{p-1}}^{i_{p}}}
d
∗
~
=
e
−
2
φ
d
∗
−
(
n
−
2
p
)
e
−
2
φ
ι
∇
φ
{\displaystyle {\widetilde {d^{\ast }}}=e^{-2\varphi }d^{\ast }-(n-2p)e^{-2\varphi }\iota _{\nabla \varphi }}
Laplacian on functions
edit
Δ
~
Φ
=
e
−
2
φ
(
Δ
Φ
+
(
n
−
2
)
g
(
d
φ
,
d
Φ
)
)
{\displaystyle {\widetilde {\Delta }}\Phi =e^{-2\varphi }{\Big (}\Delta \Phi +(n-2)g(d\varphi ,d\Phi ){\Big )}}
Δ
d
~
ω
=
e
−
2
φ
(
Δ
d
ω
−
(
n
−
2
p
)
d
∘
ι
∇
φ
ω
−
(
n
−
2
p
−
2
)
ι
∇
φ
∘
d
ω
+
2
(
n
−
2
p
)
d
φ
∧
ι
∇
φ
ω
−
2
d
φ
∧
d
∗
ω
)
{\displaystyle {\widetilde {\Delta ^{d}}}\omega =e^{-2\varphi }{\Big (}\Delta ^{d}\omega -(n-2p)d\circ \iota _{\nabla \varphi }\omega -(n-2p-2)\iota _{\nabla \varphi }\circ d\omega +2(n-2p)d\varphi \wedge \iota _{\nabla \varphi }\omega -2d\varphi \wedge d^{\ast }\omega {\Big )}}
The "geometer's" sign convention is used for the Hodge Laplacian here. In particular it has the opposite sign on functions as the usual Laplacian.
Suppose
(
M
,
g
)
{\displaystyle (M,g)}
is Riemannian and
F
:
Σ
→
(
M
,
g
)
{\displaystyle F:\Sigma \to (M,g)}
is a twice-differentiable immersion. Recall that the second fundamental form is, for each
p
∈
M
,
{\displaystyle p\in M,}
a symmetric bilinear map
h
p
:
T
p
Σ
×
T
p
Σ
→
T
F
(
p
)
M
,
{\displaystyle h_{p}:T_{p}\Sigma \times T_{p}\Sigma \to T_{F(p)}M,}
which is valued in the
g
F
(
p
)
{\displaystyle g_{F(p)}}
-orthogonal linear subspace to
d
F
p
(
T
p
Σ
)
⊂
T
F
(
p
)
M
.
{\displaystyle dF_{p}(T_{p}\Sigma )\subset T_{F(p)}M.}
Then
h
~
(
u
,
v
)
=
h
(
u
,
v
)
−
(
∇
φ
)
⊥
g
(
u
,
v
)
{\displaystyle {\widetilde {h}}(u,v)=h(u,v)-(\nabla \varphi )^{\perp }g(u,v)}
for all
u
,
v
∈
T
p
M
{\displaystyle u,v\in T_{p}M}
Here
(
∇
φ
)
⊥
{\displaystyle (\nabla \varphi )^{\perp }}
denotes the
g
F
(
p
)
{\displaystyle g_{F(p)}}
-orthogonal projection of
∇
φ
∈
T
F
(
p
)
M
{\displaystyle \nabla \varphi \in T_{F(p)}M}
onto the
g
F
(
p
)
{\displaystyle g_{F(p)}}
-orthogonal linear subspace to
d
F
p
(
T
p
Σ
)
⊂
T
F
(
p
)
M
.
{\displaystyle dF_{p}(T_{p}\Sigma )\subset T_{F(p)}M.}
Mean curvature of an immersion
edit
In the same setting as above (and suppose
Σ
{\displaystyle \Sigma }
has dimension
n
{\displaystyle n}
), recall that the mean curvature vector is for each
p
∈
Σ
{\displaystyle p\in \Sigma }
an element
H
p
∈
T
F
(
p
)
M
{\displaystyle {\textbf {H}}_{p}\in T_{F(p)}M}
defined as the
g
{\displaystyle g}
-trace of the second fundamental form. Then
H
~
=
e
−
2
φ
(
H
−
n
(
∇
φ
)
⊥
)
.
{\displaystyle {\widetilde {\textbf {H}}}=e^{-2\varphi }({\textbf {H}}-n(\nabla \varphi )^{\perp }).}
Note that this transformation formula is for the mean curvature vector , and the formula for the mean curvature
H
{\displaystyle H}
in the hypersurface case is
H
~
=
e
−
φ
(
H
−
n
⟨
∇
φ
,
η
⟩
)
{\displaystyle {\widetilde {H}}=e^{-\varphi }(H-n\langle \nabla \varphi ,\eta \rangle )}
where
η
{\displaystyle \eta }
is a (local) normal vector field.
The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.
The principal symbol of the map
g
↦
Rm
g
{\displaystyle g\mapsto \operatorname {Rm} ^{g}}
assigns to each
ξ
∈
T
p
∗
M
{\displaystyle \xi \in T_{p}^{\ast }M}
a map from the space of symmetric (0,2)-tensors on
T
p
M
{\displaystyle T_{p}M}
to the space of (0,4)-tensors on
T
p
M
,
{\displaystyle T_{p}M,}
given by
v
↦
ξ
j
ξ
k
v
i
l
+
ξ
i
ξ
l
v
j
k
−
ξ
i
ξ
k
v
j
l
−
ξ
j
ξ
l
v
i
k
2
=
−
1
2
(
ξ
⊗
ξ
)
∧
◯
v
.
{\displaystyle v\mapsto {\frac {\xi _{j}\xi _{k}v_{il}+\xi _{i}\xi _{l}v_{jk}-\xi _{i}\xi _{k}v_{jl}-\xi _{j}\xi _{l}v_{ik}}{2}}=-{\frac {1}{2}}(\xi \otimes \xi ){~\wedge \!\!\!\!\!\!\!\!\;\bigcirc ~}v.}
The principal symbol of the map
g
↦
Ric
g
{\displaystyle g\mapsto \operatorname {Ric} ^{g}}
assigns to each
ξ
∈
T
p
∗
M
{\displaystyle \xi \in T_{p}^{\ast }M}
an endomorphism of the space of symmetric 2-tensors on
T
p
M
{\displaystyle T_{p}M}
given by
v
↦
v
(
ξ
♯
,
⋅
)
⊗
ξ
+
ξ
⊗
v
(
ξ
♯
,
⋅
)
−
(
tr
g
p
v
)
ξ
⊗
ξ
−
|
ξ
|
g
2
v
.
{\displaystyle v\mapsto v(\xi ^{\sharp },\cdot )\otimes \xi +\xi \otimes v(\xi ^{\sharp },\cdot )-(\operatorname {tr} _{g_{p}}v)\xi \otimes \xi -|\xi |_{g}^{2}v.}
The principal symbol of the map
g
↦
R
g
{\displaystyle g\mapsto R^{g}}
assigns to each
ξ
∈
T
p
∗
M
{\displaystyle \xi \in T_{p}^{\ast }M}
an element of the dual space to the vector space of symmetric 2-tensors on
T
p
M
{\displaystyle T_{p}M}
by
v
↦
|
ξ
|
g
2
tr
g
v
+
v
(
ξ
♯
,
ξ
♯
)
.
{\displaystyle v\mapsto |\xi |_{g}^{2}\operatorname {tr} _{g}v+v(\xi ^{\sharp },\xi ^{\sharp }).}
Arthur L. Besse. "Einstein manifolds." Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10. Springer-Verlag, Berlin, 1987. xii+510 pp. ISBN 3-540-15279-2