Jürgen Sturm is a German software engineer, entrepreneur and academic. He is a Senior Staff Software Engineering Manager at Intrinsic, where he works on developing a robot SDK aimed at facilitating and reducing the cost of integrating AI-/ML-powered robots into industrial manufacturing processes.[1]

Jürgen Sturm
NationalityGerman
EducationBS., Artificial Intelligence
MS., Artificial Intelligence
PhD., Robotics
Postdoc., Computer Vision
Alma materUniversity of Amsterdam
University of Freiburg
Technical University of Munich
Occupation(s)Software engineer, entrepreneur and academic
Engineering career
InstitutionsFabliTec
Metaio (acquired by Apple)
Google
Intrinsic
Websitehttps://jsturm.de/

Sturm is most known for his work on robotics, computer vision, machine learning and artificial intelligence.[2] He has authored and co-authored research articles and a book entitled Approaches to Probabilistic Model Learning for Mobile Manipulation Robots. He is the recipient of the 2011 European Coordinating Committee of Artificial Intelligence (ECCAI) Best Dissertation Award,[3] the 2011 Wolfgang-Gentner Award for an Outstanding PhD Thesis,[4] the TeachInf Best Lecture Award from the Technical University of Munich in 2012 and 2013 for his course Visual Navigation for Flying Robots,[5] and is listed among the most influential robotics scholars in 2022 by Technical University of Munich by AMiner.[6]

Education and early career

edit

Sturm earned his bachelor's and master's degrees in Artificial Intelligence from the University of Amsterdam in 2006, followed by a PhD in Robotics from the University of Freiburg, with his later thesis published as a book in 2013.[7] From 2011 to 2014, he served as a Postdoctoral Researcher in the Computer Vision group at the Technical University of Munich (TUM), where he worked on real-time camera tracking and 3D person scanning methods. Concurrently, he began his academic career, delivering lectures at TUM and teaching an online course at EdX in 2012 and 2013.[8]

Career

edit

At TUM, Sturm developed a 3D reconstruction algorithm enabling 3D scanning of a person for printing as a small figure,[9] leading to him co-founding the 3D scanning startup FabliTec in 2013, where he served as CEO until 2015.[10] In 2014, he joined Metaio as a Senior Software Developer and Team Lead.[11] Subsequently, he was appointed Senior Software Engineer and Tech Lead Manager at Google.[12] leading to multiple patents.[13][14] He assumed the position of an Engineering Manager at Intrinsic in 2019.[1]

Research

edit

Sturm has contributed to the field of engineering by studying robotics, machine intelligence and machine perception, holding several patents for his developments in RGB-D cameras and 3D mapping techniques.[2]

RGB-D SLAM

edit

Sturm has researched and worked on RGB-D cameras throughout his career. In a collaborative effort, he presented a benchmark for RGB-D SLAM systems, offering high-quality image sequences with accurate ground truth camera poses, diverse scenes, and automatic evaluation tools accessible through a dedicated website.[15] He also proposed a dense visual SLAM method for RGB-D cameras, alongside Daniel Cremers and Wolfram Burgard, improving pose accuracy by minimizing errors.[16] Additionally, he showcased an RGB-D camera SLAM system for the Microsoft Kinect, assessing its accuracy, robustness, and speed across different indoor scenarios and offering it as open-source software.[17]

3D mapping

edit

Sturm's work on 3D mapping focused on reconstruction and improving techniques for precision. Alongside colleagues, he demonstrated a mapping system using RGB-D cameras for accurate 3-D mapping.[18] He also introduced a real-time mapping system for RGB-D images using an octree structure to update a textured triangle mesh, enabling efficient memory usage for mobile or flying robots,[19] as well as a new real-time visual odometry method for monocular cameras, achieving superior accuracy and speed by continuously estimating a semi-dense inverse depth map.[20] Furthermore, he presented a 3D reconstruction algorithm based on Truncated Signed Distance Functions (TSDF), addressing the challenge of representing dynamic environments for robots, with a focus on continuous refinement of static maps and robust scene differencing.[21]

In a joint research effort, Sturm proposed a graph-based method to calibrate sensor suites for accurate direct georeferencing of images from small unmanned aerial systems, addressing static offsets and in-flight calibration of intrinsic camera parameters.[22]

3D perception

edit

Sturm has been involved in the development of models for 3D perception and scanning as well. He presented ScanComplete, a data-driven method using a generative 3D CNN model to predict complete 3D models with semantic labels from incomplete scans.[23] In addition, he revealed a real-time RGB-D scene understanding method for mobile devices, combining incremental reconstruction, geometric segmentation, and semantic labeling.[24]

Awards and honors

edit
  • 2011 – Best Dissertation Award, European Coordinating Committee of Artificial Intelligence (ECCAI)[3]
  • 2011 – Wolfgang-Gentner-Award for an Outstanding PhD Thesis, University of Freiburg[4]
  • 2012 – Best Research Paper Award, Unmanned Aerial Vehicle in Geomatics
  • 2012, 2013 – TeachInf Best Lecture Award, Technical University of Munich[5]
  • 2022 – Most Influential Robotics Scholar[6]

Bibliography

edit

Books

edit
  • Approaches to Probabilistic Model Learning for Mobile Manipulation Robots (2013) ISBN 978-3642371592

Selected articles

edit
  • Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., & Burgard, W. (2012, May). An evaluation of the RGB-D SLAM system. In 2012 IEEE international conference on robotics and automation (pp. 1691-1696). IEEE.
  • Sturm, J., Engelhard, N., Endres, F., Burgard, W., & Cremers, D. (2012, October). A benchmark for the evaluation of RGB-D SLAM systems. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 573-580). IEEE.
  • Kerl, C., Sturm, J., & Cremers, D. (2013, November). Dense visual SLAM for RGB-D cameras. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2100-2106). IEEE.
  • Rethage, D., Wald, J., Sturm, J., Navab, N., & Tombari, F. (2018). Fully-convolutional point networks for large-scale point clouds. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 596-611).
  • Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., & Nießner, M. (2018). Scancomplete: Large-scale scene completion and semantic segmentation for 3d scans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4578-4587).

References

edit
  1. ^ a b Häußler, Ute. "Google steigt in Industrie-Robotik ein". Computer&AUTOMATION.
  2. ^ a b "Jürgen Sturm". scholar.google.com.
  3. ^ a b "2011 Dissertation Award".
  4. ^ a b "News - Arbeitsgruppe: Autonome Intelligente Systeme". ais.informatik.uni-freiburg.de.
  5. ^ a b "TeachInf". Fachschaft MPIC. November 13, 2023.
  6. ^ a b "Computer Vision Group - News Archive". cvg.cit.tum.de.
  7. ^ "PhD Thesis".
  8. ^ "TUMx: Autonomous Navigation for Flying Robots". edX.
  9. ^ Sturm, Jürgen; Bylow, Erik; Kahl, Fredrik; Cremers, Daniel (April 5, 2013). "CopyMe3D: Scanning and Printing Persons in 3D". In Weickert, Joachim; Hein, Matthias; Schiele, Bernt (eds.). Pattern Recognition. Lecture Notes in Computer Science. Vol. 8142. Springer. pp. 405–414. doi:10.1007/978-3-642-40602-7_43. ISBN 978-3-642-40601-0 – via Springer Link.
  10. ^ "CopyMe3D: High-Resolution 3D Copying and Printing of Objects | COPYME3D Project | Fact Sheet | FP7". CORDIS | European Commission.
  11. ^ "Apple Buys Metaio For Augmented Reality Technology".
  12. ^ "Juergen Sturm". research.google.
  13. ^ "Extracting 2d floor plan from 3d grid representation of interior space".
  14. ^ "Automated understanding of three dimensional (3D) scenes for augmented reality applications".
  15. ^ Sturm, Jrgen; Engelhard, Nikolas; Endres, Felix; Burgard, Wolfram; Cremers, Daniel (October 5, 2012). "A benchmark for the evaluation of RGB-D SLAM systems". 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. pp. 573–580. doi:10.1109/iros.2012.6385773. ISBN 978-1-4673-1736-8.
  16. ^ Kerl, Christian; Sturm, Jurgen; Cremers, Daniel (November 5, 2013). "Dense visual SLAM for RGB-D cameras". 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. pp. 2100–2106. doi:10.1109/iros.2013.6696650. ISBN 978-1-4673-6358-7.
  17. ^ Endres, Felix; Hess, Jurgen; Engelhard, Nikolas; Sturm, Jurgen; Cremers, Daniel; Burgard, Wolfram (May 5, 2012). "An evaluation of the RGB-D SLAM system". 2012 IEEE International Conference on Robotics and Automation. IEEE. pp. 1691–1696. doi:10.1109/icra.2012.6225199. ISBN 978-1-4673-1405-3.
  18. ^ Endres, Felix; Hess, Jurgen; Sturm, Jurgen; Cremers, Daniel; Burgard, Wolfram (February 5, 2014). "3-D Mapping With an RGB-D Camera". IEEE Transactions on Robotics. 30 (1): 177–187. doi:10.1109/TRO.2013.2279412 – via CrossRef.
  19. ^ Steinbrucker, Frank; Sturm, Jurgen; Cremers, Daniel (May 5, 2014). "Volumetric 3D mapping in real-time on a CPU". 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE. pp. 2021–2028. doi:10.1109/ICRA.2014.6907127. ISBN 978-1-4799-3685-4 – via CrossRef.
  20. ^ Engel, Jakob; Sturm, Jurgen; Cremers, Daniel (April 5, 2013). "Semi-dense Visual Odometry for a Monocular Camera". pp. 1449–1456 – via openaccess.thecvf.com.
  21. ^ Fehr, Marius; Furrer, Fadri; Dryanovski, Ivan; Sturm, Jürgen; Gilitschenski, Igor; Siegwart, Roland; Cadena, Cesar (May 5, 2017). "TSDF-based change detection for consistent long-term dense reconstruction and dynamic object discovery". 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE. pp. 5237–5244. doi:10.1109/ICRA.2017.7989614. hdl:20.500.11850/189737. ISBN 978-1-5090-4633-1 – via www.research-collection.ethz.ch.
  22. ^ Bender, D.; Schikora, M.; Sturm, J.; Cremers, D. (August 16, 2013). "A Graph Based Bundle Adjustment for Ins-Camera Calibration". The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-1 – W2: 39–44. doi:10.5194/isprsarchives-XL-1-W2-39-2013 – via Copernicus Online Journals.
  23. ^ Dai, Angela; Ritchie, Daniel; Bokeloh, Martin; Reed, Scott; Sturm, Jürgen; Nießner, Matthias (April 5, 2018). "ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans". pp. 4578–4587 – via openaccess.thecvf.com.
  24. ^ Wald, Johanna; Tateno, Keisuke; Sturm, Jurgen; Navab, Nassir; Tombari, Federico (October 5, 2018). "Real-Time Fully Incremental Scene Understanding on Mobile Platforms". IEEE Robotics and Automation Letters. 3 (4): 3402–3409. doi:10.1109/LRA.2018.2852782 – via CrossRef.