In mathematics, the immanant of a matrix was defined by Dudley E. Littlewood and Archibald Read Richardson as a generalisation of the concepts of determinant and permanent.

Let be a partition of an integer and let be the corresponding irreducible representation-theoretic character of the symmetric group . The immanant of an matrix associated with the character is defined as the expression

Examples

edit

The determinant is a special case of the immanant, where   is the alternating character  , of Sn, defined by the parity of a permutation.

The permanent is the case where   is the trivial character, which is identically equal to 1.

For example, for   matrices, there are three irreducible representations of  , as shown in the character table:

       
  1 1 1
  1 −1 1
  2 0 −1

As stated above,   produces the permanent and   produces the determinant, but   produces the operation that maps as follows:

 

Properties

edit

The immanant shares several properties with determinant and permanent. In particular, the immanant is multilinear in the rows and columns of the matrix; and the immanant is invariant under simultaneous permutations of the rows or columns by the same element of the symmetric group.

Littlewood and Richardson studied the relation of the immanant to Schur functions in the representation theory of the symmetric group.

The necessary and sufficient conditions for the immanant of a Gram matrix to be   are given by Gamas's Theorem.

References

edit
  • D. E. Littlewood; A.R. Richardson (1934). "Group characters and algebras". Philosophical Transactions of the Royal Society A. 233 (721–730): 99–124. Bibcode:1934RSPTA.233...99L. doi:10.1098/rsta.1934.0015.
  • D. E. Littlewood (1950). The Theory of Group Characters and Matrix Representations of Groups (2nd ed.). Oxford Univ. Press (reprinted by AMS, 2006). p. 81.