In geometry, an icositrigon (or icosikaitrigon) or 23-gon is a 23-sided polygon. The icositrigon has the distinction of being the smallest regular polygon that is not neusis constructible.
Regular icositrigon | |
---|---|
Type | Regular polygon |
Edges and vertices | 23 |
Schläfli symbol | {23} |
Coxeter–Dynkin diagrams | |
Symmetry group | Dihedral (D23), order 2×23 |
Internal angle (degrees) | ≈164.348° |
Properties | Convex, cyclic, equilateral, isogonal, isotoxal |
Dual polygon | Self |
Regular icositrigon
editA regular icositrigon is represented by Schläfli symbol {23}.
A regular icositrigon has internal angles of degrees, with an area of where is side length and is the inradius, or apothem.
The regular icositrigon is not constructible with a compass and straightedge or angle trisection,[1] on account of the number 23 being neither a Fermat nor Pierpont prime. In addition, the regular icositrigon is the smallest regular polygon that is not constructible even with neusis.
Concerning the nonconstructability of the regular icositrigon, A. Baragar (2002) showed it is not possible to construct a regular 23-gon using only a compass and twice-notched straightedge by demonstrating that every point constructible with said method lies in a tower of fields over such that , being a sequence of nested fields in which the degree of the extension at each step is 2, 3, 5, or 6.
Suppose in is constructible using a compass and twice-notched straightedge. Then belongs to a field that lies in a tower of fields for which the index at each step is 2, 3, 5, or 6. In particular, if , then the only primes dividing are 2, 3, and 5. (Theorem 5.1)
If we can construct the regular p-gon, then we can construct , which is the root of an irreducible polynomial of degree . By Theorem 5.1, lies in a field of degree over , where the only primes that divide are 2, 3, and 5. But is a subfield of , so divides . In particular, for , must be divisible by 11, and for , N must be divisible by 7.[2]
This result establishes, considering prime-power regular polygons less than the 100-gon, that it is impossible to construct the 23-, 29-, 43-, 47-, 49-, 53-, 59-, 67-, 71-, 79-, 83-, and 89-gons with neusis. But it is not strong enough to decide the cases of the 11-, 25-, 31-, 41-, and 61-gons. Elliot Benjamin and Chip Snyder discovered in 2014 that the regular hendecagon (11-gon) is neusis constructible; the remaining cases are still open.[3]
An icositrigon is not origami constructible either, because 23 is not a Pierpont prime, nor a power of two or three.[4] It can be constructed using the quadratrix of Hippias, Archimedean spiral, and other auxiliary curves; yet this is true for all regular polygons.[5]
Related figures
editBelow is a table of ten regular icositrigrams, or star 23-gons, labeled with their respective Schläfli symbol {23/q}, 2 ≤ q ≤ 11.
{23/2} |
{23/3} |
{23/4} |
{23/5} |
{23/6} |
{23/7} |
{23/8} |
{23/9} |
{23/10} |
{23/11} |
References
edit- ^ Sloane, N. J. A. (ed.). "Sequence A048136 (Tomahawk-nonconstructible -gons)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Baragar, Arthur (2002). "Constructions Using a Compass and Twice-Notched Straightedge". The American Mathematical Monthly. 109 (2): 151–164. doi:10.1080/00029890.2002.11919848.
- ^ Benjamin, Elliot; Snyder, C. (May 2014). "On the construction of the regular hendecagon by marked ruler and compass". Mathematical Proceedings of the Cambridge Philosophical Society. 156 (3): 409–424. doi:10.1017/S0305004113000753.
- ^ Young Lee, H. (2017) Origami-Constructible Numbers University of Georgia https://getd.libs.uga.edu/pdfs/lee_hwa-young_201712_ma.pdf
- ^ Milici, P.; Dawson, R. (December 2012). "The equiangular compass" (PDF). The Mathematical Intelligencer. 34 (4): 63–67. doi:10.1007/s00283-012-9308-x.
External links
edit- Kovács, Zoltán (2020). "Automated Detection of Interesting Properties in Regular Polygons". Mathematics in Computer Science. 14: 727–755. doi:10.1007/s11786-020-00491-z.