Gustave Dumas (5 March 1872, L'Etivaz, Vaud, Switzerland – 11 July 1955) was a Swiss mathematician, specializing in algebraic geometry.[1]

Dumas received a baccalaureate degree from the University of Lausanne, then another baccalaureate degree from the Sorbonne, and in 1904 a doctoral degree from the Sorbonne with dissertation Sur les fonctions à caractère algébrique dans le voisinage d'un point donné.[2] In 1906 he obtained his habilitation qualification from Zürich's Federal Polytechnic School with habilitation dissertation Sur quelques cas d'irréductibilité des polynômes à coefficients rationnels. From 1906 to 1913 Dumas taught higher mathematics at the Federal Polytechnic School. At the University of Lausanne's Engineering School, he became in 1913 a professor extraordinarius and in 1916 a professor ordinarius, retiring in 1942. At Lausanne he had an important influence on his student Georges de Rham, who became Dumas's assistant before graduating in 1925.[1]

Dumas served a two-year term as president of the Swiss Mathematical Society in 1922–1923. He was an Invited Speaker of the International Congress of Mathematicians in 1928 at Bologna.[3]

Selected publications

edit
  • "Sur quelques cas d'irréductibilité des polynômes à coefficients rationnels." Journal de Mathématiques Pures et Appliquées 2 (1906): 191–258.
  • "Sur la résolution des singularités des surfaces." CR Acad. Sci. Paris 152 (1911): 682–684.
  • "Sur le polygone de Newton et les courbes algébriques planes." Commentarii Mathematici Helvetici 1, no. 1 (1929): 120–141. doi:10.1007/BF01208360

References

edit
  1. ^ a b O'Connor, John J.; Robertson, Edmund F., "Gustave Dumas", MacTutor History of Mathematics Archive, University of St Andrews
  2. ^ Dumas, Gustave (1904). Sur les fonctions à caractère algébrique dans le voisinage d'un point donné. Librairie scientifique J. Rousset; thèse, Sorbonne{{cite book}}: CS1 maint: postscript (link)
  3. ^ Dumas, G. "Sur les singularités des surfaces" (PDF). In: Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928. Vol. 4. pp. 419–424.