In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme with an action by a group scheme G is the affine scheme , the prime spectrum of the ring of invariants of A, and is denoted by . A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it.

Taking Proj (of a graded ring) instead of , one obtains a projective GIT quotient (which is a quotient of the set of semistable points.)

A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has

for an algebraic group G over a field k and closed subgroup H.[clarification needed]

If X is a complex smooth projective variety and if G is a reductive complex Lie group, then the GIT quotient of X by G is homeomorphic to the symplectic quotient of X by a maximal compact subgroup of G (Kempf–Ness theorem).

Construction of a GIT quotient

edit

Let G be a reductive group acting on a quasi-projective scheme X over a field and L a linearized ample line bundle on X. Let

 

be the section ring. By definition, the semistable locus   is the complement of the zero set   in X; in other words, it is the union of all open subsets   for global sections s of  , n large. By ampleness, each   is affine; say   and so we can form the affine GIT quotient

 

Note that   is of finite type by Hilbert's theorem on the ring of invariants. By universal property of categorical quotients, these affine quotients glue and result in

 

which is the GIT quotient of X with respect to L. Note that if X is projective; i.e., it is the Proj of R, then the quotient   is given simply as the Proj of the ring of invariants  .

The most interesting case is when the stable locus[1]   is nonempty;   is the open set of semistable points that have finite stabilizers and orbits that are closed in  . In such a case, the GIT quotient restricts to

 

which has the property: every fiber is an orbit. That is to say,   is a genuine quotient (i.e., geometric quotient) and one writes  . Because of this, when   is nonempty, the GIT quotient   is often referred to as a "compactification" of a geometric quotient of an open subset of X.

A difficult and seemingly open question is: which geometric quotient arises in the above GIT fashion? The question is of a great interest since the GIT approach produces an explicit quotient, as opposed to an abstract quotient, which is hard to compute. One known partial answer to this question is the following:[2] let   be a locally factorial algebraic variety (for example, a smooth variety) with an action of  . Suppose there are an open subset   as well as a geometric quotient   such that (1)   is an affine morphism and (2)   is quasi-projective. Then   for some linearlized line bundle L on X. (An analogous question is to determine which subring is the ring of invariants in some manner.)

Examples

edit

Finite group action by  

edit

A simple example of a GIT quotient is given by the  -action on   sending

 

Notice that the monomials   generate the ring  . Hence we can write the ring of invariants as

 

Scheme theoretically, we get the morphism

 

which is a singular subvariety of   with isolated singularity at  . This can be checked using the differentials, which are

 

hence the only point where the differential and the polynomial   both vanish is at the origin. The quotient obtained is a conical surface with an ordinary double point at the origin.

Torus action on plane

edit

Consider the torus action of   on   by  . Note this action has a few orbits: the origin  , the punctured axes,  , and the affine conics given by   for some  . Then, the GIT quotient   has structure sheaf   which is the subring of polynomials  , hence it is isomorphic to  . This gives the GIT quotient

 

Notice the inverse image of the point   is given by the orbits  , showing the GIT quotient isn't necessarily an orbit space. If it were, there would be three origins, a non-separated space.[3]

See also

edit

Notes

edit
  1. ^ NB: In (Mumford, Fogarty & Kirwan 1994), it was called the set of properly stable points
  2. ^ Mumford, Fogarty & Kirwan 1994, Converse 1.13. NB: even though the result is stated for a smooth variety, the proof there is valid for a locally factorial one.
  3. ^ Thomas, Richard P. (2006). "Notes on GIT and symplectic reduction for bundles and varieties". Surveys in Differential Geometry. 10 (1). International Press of Boston: 221–273. arXiv:math/0512411. doi:10.4310/sdg.2005.v10.n1.a7. ISSN 1052-9233. MR 2408226. S2CID 16294331.

References

edit

Pedagogical

edit

References

edit