In literature the definition of the fractional Laplacian often varies, but most of the time those definitions are equivalent. The following is a short overview proven by Kwaśnicki, M in.[ 3]
Let
p
∈
[
1
,
∞
)
{\displaystyle p\in [1,\infty )}
and
X
:=
L
p
(
R
n
)
{\displaystyle {\mathcal {X}}:=L^{p}(\mathbb {R} ^{n})}
or let
X
:=
C
0
(
R
n
)
{\displaystyle {\mathcal {X}}:=C_{0}(\mathbb {R} ^{n})}
or
X
:=
C
b
u
(
R
n
)
{\displaystyle {\mathcal {X}}:=C_{bu}(\mathbb {R} ^{n})}
, where:
C
0
(
R
n
)
{\displaystyle C_{0}(\mathbb {R} ^{n})}
denotes the space of continuous functions
f
:
R
n
→
R
{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }
that vanish at infinity, i.e.,
∀
ε
>
0
,
∃
K
⊂
R
n
{\displaystyle \forall \varepsilon >0,\exists K\subset \mathbb {R} ^{n}}
compact such that
|
f
(
x
)
|
<
ϵ
{\displaystyle |f(x)|<\epsilon }
for all
x
∉
K
{\displaystyle x\notin K}
.
C
b
u
(
R
n
)
{\displaystyle C_{bu}(\mathbb {R} ^{n})}
denotes the space of bounded uniformly continuous functions
f
:
R
n
→
R
{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }
, i.e., functions that are uniformly continuous, meaning
∀
ϵ
>
0
,
∃
δ
>
0
{\displaystyle \forall \epsilon >0,\exists \delta >0}
such that
|
f
(
x
)
−
f
(
y
)
|
<
ϵ
{\displaystyle |f(x)-f(y)|<\epsilon }
for all
x
,
y
∈
R
n
{\displaystyle x,y\in \mathbb {R} ^{n}}
with
|
x
−
y
|
<
δ
{\displaystyle |x-y|<\delta }
, and bounded, meaning
∃
M
>
0
{\displaystyle \exists M>0}
such that
|
f
(
x
)
|
≤
M
{\displaystyle |f(x)|\leq M}
for all
x
∈
R
n
{\displaystyle x\in \mathbb {R} ^{n}}
.
Additionally, let
s
∈
(
0
,
1
)
{\displaystyle s\in (0,1)}
.
If we further restrict to
p
∈
[
1
,
2
]
{\displaystyle p\in [1,2]}
, we get
(
−
Δ
)
s
f
:=
F
ξ
−
1
(
|
ξ
|
2
s
F
(
f
)
)
{\displaystyle (-\Delta )^{s}f:={\mathcal {F}}_{\xi }^{-1}(|\xi |^{2s}{\mathcal {F}}(f))}
This definition uses the Fourier transform for
f
∈
L
p
(
R
n
)
{\displaystyle f\in L^{p}(\mathbb {R} ^{n})}
. This definition can also be broadened through the Bessel potential to all
p
∈
[
1
,
∞
)
{\displaystyle p\in [1,\infty )}
.
The Laplacian can also be viewed as a singular integral operator which is defined as the following limit taken in
X
{\displaystyle {\mathcal {X}}}
.
(
−
Δ
)
s
f
(
x
)
=
4
s
Γ
(
d
2
+
s
)
π
d
/
2
|
Γ
(
−
s
)
|
lim
r
→
0
+
∫
R
d
∖
B
r
(
x
)
f
(
x
)
−
f
(
y
)
|
x
−
y
|
d
+
2
s
d
y
{\displaystyle (-\Delta )^{s}f(x)={\frac {4^{s}\Gamma ({\frac {d}{2}}+s)}{\pi ^{d/2}|\Gamma (-s)|}}\lim _{r\to 0^{+}}\int \limits _{\mathbb {R} ^{d}\setminus B_{r}(x)}{{\frac {f(x)-f(y)}{|x-y|^{d+2s}}}\,dy}}
Generator of C_0-semigroup
edit
Using the fractional heat-semigroup which is the family of operators
{
P
t
}
t
∈
[
0
,
∞
)
{\displaystyle \{P_{t}\}_{t\in [0,\infty )}}
, we can define the fractional Laplacian through its generator.
−
(
−
Δ
)
s
f
(
x
)
=
lim
t
→
0
+
P
t
f
−
f
t
{\displaystyle -(-\Delta )^{s}f(x)=\lim _{t\to 0^{+}}{\frac {P_{t}f-f}{t}}}
It is to note that the generator is not the fractional Laplacian
(
−
Δ
)
s
{\displaystyle (-\Delta )^{s}}
but the negative of it
−
(
−
Δ
)
s
{\displaystyle -(-\Delta )^{s}}
. The operator
P
t
:
X
→
X
{\displaystyle P_{t}:{\mathcal {X}}\to {\mathcal {X}}}
is defined by
P
t
f
:=
p
t
∗
f
{\displaystyle P_{t}f:=p_{t}*f}
,
where
∗
{\displaystyle *}
is the convolution of two functions and
p
t
:=
F
ξ
−
1
(
e
−
t
|
ξ
|
2
s
)
{\displaystyle p_{t}:={\mathcal {F}}_{\xi }^{-1}(e^{-t|\xi |^{2s}})}
.
Distributional Definition
edit
For all Schwartz functions
φ
{\displaystyle \varphi }
, the fractional Laplacian can be defined in a distributional sense by
∫
R
d
(
−
Δ
)
s
f
(
y
)
φ
(
y
)
d
y
=
∫
R
d
f
(
x
)
(
−
Δ
)
s
φ
(
x
)
d
x
{\displaystyle \int _{\mathbb {R} ^{d}}(-\Delta )^{s}f(y)\varphi (y)\,dy=\int _{\mathbb {R} ^{d}}f(x)(-\Delta )^{s}\varphi (x)\,dx}
where
(
−
Δ
)
s
φ
{\displaystyle (-\Delta )^{s}\varphi }
is defined as in the Fourier definition.
Bochner's Definition
edit
The fractional Laplacian can be expressed using Bochner's integral as
(
−
Δ
)
s
f
=
1
Γ
(
−
s
2
)
∫
0
∞
(
e
t
Δ
f
−
f
)
t
−
1
−
s
/
2
d
t
{\displaystyle (-\Delta )^{s}f={\frac {1}{\Gamma (-{\frac {s}{2}})}}\int _{0}^{\infty }\left(e^{t\Delta }f-f\right)t^{-1-s/2}\,dt}
where the integral is understood in the Bochner sense for
X
{\displaystyle {\mathcal {X}}}
-valued functions.
Balakrishnan's Definition
edit
Alternatively, it can be defined via Balakrishnan's formula:
(
−
Δ
)
s
f
=
sin
(
s
π
2
)
π
∫
0
∞
(
−
Δ
)
(
s
I
−
Δ
)
−
1
f
s
s
/
2
−
1
d
s
{\displaystyle (-\Delta )^{s}f={\frac {\sin \left({\frac {s\pi }{2}}\right)}{\pi }}\int _{0}^{\infty }(-\Delta )\left(sI-\Delta \right)^{-1}f\,s^{s/2-1}\,ds}
with the integral interpreted as a Bochner integral for
X
{\displaystyle {\mathcal {X}}}
-valued functions.
Another approach by Dynkin defines the fractional Laplacian as
(
−
Δ
)
s
f
=
lim
r
→
0
+
2
s
Γ
(
d
+
s
2
)
π
d
/
2
Γ
(
−
s
2
)
∫
R
d
∖
B
¯
(
x
,
r
)
f
(
x
+
z
)
−
f
(
x
)
|
z
|
d
(
|
z
|
2
−
r
2
)
s
/
2
d
z
{\displaystyle (-\Delta )^{s}f=\lim _{r\to 0^{+}}{\frac {2^{s}\Gamma \left({\frac {d+s}{2}}\right)}{\pi ^{d/2}\Gamma \left(-{\frac {s}{2}}\right)}}\int _{\mathbb {R} ^{d}\setminus {\overline {B}}(x,r)}{\frac {f(x+z)-f(x)}{|z|^{d}\left(|z|^{2}-r^{2}\right)^{s/2}}}\,dz}
with the limit taken in
X
{\displaystyle {\mathcal {X}}}
.
In
X
=
L
2
{\displaystyle {\mathcal {X}}=L^{2}}
, the fractional Laplacian can be characterized via a quadratic form:
⟨
(
−
Δ
)
s
f
,
φ
⟩
=
E
(
f
,
φ
)
{\displaystyle \langle (-\Delta )^{s}f,\varphi \rangle ={\mathcal {E}}(f,\varphi )}
where
E
(
f
,
g
)
=
2
s
Γ
(
d
+
s
2
)
2
π
d
/
2
Γ
(
−
s
2
)
∫
R
d
∫
R
d
(
f
(
y
)
−
f
(
x
)
)
(
g
(
y
)
¯
−
g
(
x
)
¯
)
|
x
−
y
|
d
+
s
d
x
d
y
{\displaystyle {\mathcal {E}}(f,g)={\frac {2^{s}\Gamma \left({\frac {d+s}{2}}\right)}{2\pi ^{d/2}\Gamma \left(-{\frac {s}{2}}\right)}}\int _{\mathbb {R} ^{d}}\int _{\mathbb {R} ^{d}}{\frac {(f(y)-f(x))({\overline {g(y)}}-{\overline {g(x)}})}{|x-y|^{d+s}}}\,dx\,dy}
Inverse of the Riesz Potential Definition
edit
When
s
<
d
{\displaystyle s<d}
and
X
=
L
p
{\displaystyle {\mathcal {X}}=L^{p}}
for
p
∈
[
1
,
d
s
)
{\displaystyle p\in [1,{\frac {d}{s}})}
, the fractional Laplacian satisfies
Γ
(
d
−
s
2
)
2
s
π
d
/
2
Γ
(
s
2
)
∫
R
d
(
−
Δ
)
s
f
(
x
+
z
)
|
z
|
d
−
s
d
z
=
f
(
x
)
{\displaystyle {\frac {\Gamma \left({\frac {d-s}{2}}\right)}{2^{s}\pi ^{d/2}\Gamma \left({\frac {s}{2}}\right)}}\int _{\mathbb {R} ^{d}}{\frac {(-\Delta )^{s}f(x+z)}{|z|^{d-s}}}\,dz=f(x)}
Harmonic Extension Definition
edit
The fractional Laplacian can also be defined through harmonic extensions. Specifically, there exists a function
u
(
x
,
y
)
{\displaystyle u(x,y)}
such that
{
Δ
x
u
(
x
,
y
)
+
α
2
c
α
2
/
α
y
2
−
2
/
α
∂
y
2
u
(
x
,
y
)
=
0
for
y
>
0
,
u
(
x
,
0
)
=
f
(
x
)
,
∂
y
u
(
x
,
0
)
=
−
(
−
Δ
)
s
f
(
x
)
,
{\displaystyle {\begin{cases}\Delta _{x}u(x,y)+\alpha ^{2}c_{\alpha }^{2/\alpha }y^{2-2/\alpha }\partial _{y}^{2}u(x,y)=0&{\text{for }}y>0,\\u(x,0)=f(x),\\\partial _{y}u(x,0)=-(-\Delta )^{s}f(x),\end{cases}}}
where
c
α
=
2
−
α
|
Γ
(
−
α
2
)
|
Γ
(
α
2
)
{\displaystyle c_{\alpha }=2^{-\alpha }{\frac {|\Gamma \left(-{\frac {\alpha }{2}}\right)|}{\Gamma \left({\frac {\alpha }{2}}\right)}}}
and
u
(
⋅
,
y
)
{\displaystyle u(\cdot ,y)}
is a function in
X
{\displaystyle {\mathcal {X}}}
that depends continuously on
y
∈
[
0
,
∞
)
{\displaystyle y\in [0,\infty )}
with
‖
u
(
⋅
,
y
)
‖
X
{\displaystyle \|u(\cdot ,y)\|_{\mathcal {X}}}
bounded for all
y
≥
0
{\displaystyle y\geq 0}
.