Discrete orthogonal polynomials

In mathematics, a sequence of discrete orthogonal polynomials is a sequence of polynomials that are pairwise orthogonal with respect to a discrete measure. Examples include the discrete Chebyshev polynomials, Charlier polynomials, Krawtchouk polynomials, Meixner polynomials, dual Hahn polynomials, Hahn polynomials, and Racah polynomials.

If the measure has finite support, then the corresponding sequence of discrete orthogonal polynomials has only a finite number of elements. The Racah polynomials give an example of this.

Definition

edit

Consider a discrete measure   on some set   with weight function  .

A family of orthogonal polynomials   is called discrete if they are orthogonal with respect to   (resp.  ), i.e.,

 

where   is the Kronecker delta.[1]

Remark

edit

Any discrete measure is of the form

 ,

so one can define a weight function by  .

Literature

edit
  • Baik, Jinho; Kriecherbauer, T.; McLaughlin, K. T.-R.; Miller, P. D. (2007), Discrete orthogonal polynomials. Asymptotics and applications, Annals of Mathematics Studies, vol. 164, Princeton University Press, ISBN 978-0-691-12734-7, MR 2283089

References

edit
  1. ^ Arvesú, J.; Coussement, J.; Van Assche, Walter (2003). "Some discrete multiple orthogonal polynomials". Journal of Computational and Applied Mathematics. 153: 19–45.