In mathematics, the Besov space (named after Oleg Vladimirovich Besov) is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ ∞. These spaces, as well as the similarly defined Triebel–Lizorkin spaces, serve to generalize more elementary function spaces such as Sobolev spaces and are effective at measuring regularity properties of functions.
Definition
editSeveral equivalent definitions exist. One of them is given below.
Let
and define the modulus of continuity by
Let n be a non-negative integer and define: s = n + α with 0 < α ≤ 1. The Besov space contains all functions f such that
Norm
editThe Besov space is equipped with the norm
The Besov spaces coincide with the more classical Sobolev spaces .
If and is not an integer, then , where denotes the Sobolev–Slobodeckij space.
References
edit- Triebel, Hans (1992). Theory of Function Spaces II. doi:10.1007/978-3-0346-0419-2. ISBN 978-3-0346-0418-5.
- Besov, O. V. (1959). "On some families of functional spaces. Imbedding and extension theorems". Dokl. Akad. Nauk SSSR (in Russian). 126: 1163–1165. MR 0107165.
- DeVore, R. and Lorentz, G. "Constructive Approximation", 1993.
- DeVore, R., Kyriazis, G. and Wang, P. "Multiscale characterizations of Besov spaces on bounded domains", Journal of Approximation Theory 93, 273-292 (1998).
- Leoni, Giovanni (2017). A First Course in Sobolev Spaces: Second Edition. Graduate Studies in Mathematics. 181. American Mathematical Society. pp. 734. ISBN 978-1-4704-2921-8