Autophagy is a process of bulk protein degradation in which cytoplasmic components, including organelles, are enclosed in double-membrane structures called autophagosomes and delivered to lysosomes or vacuoles for degradation. ATG12 is the human homolog of a yeast protein involved in autophagy (Mizushima et al., 1998).[supplied by OMIM][6]
Autophagy requires the covalent attachment of the protein Atg12 to ATG5 through a ubiquitin-like conjugation system. The Atg12-Atg5 conjugate then promotes the conjugation of ATG8 to the lipid phosphatidylethanolamine.[7]
Atg12 was found to be involved in apoptosis. This protein promotes apoptosis through an interaction with anti-apoptotic members of the Bcl-2 family.[8]
^J. Geng, and D. J. Klionsky, 'The Atg8 and Atg12 Ubiquitin-Like Conjugation Systems in Macroautophagy. 'Protein Modifications: Beyond the Usual Suspects' Review Series', EMBO Rep, 9 (2008), 859-64.
^A. D. Rubinstein, M. Eisenstein, Y. Ber, S. Bialik, and A. Kimchi, 'The Autophagy Protein Atg12 Associates with Antiapoptotic Bcl-2 Family Members to Promote Mitochondrial Apoptosis', Mol Cell, 44 (2011), 698-709
Tanida I, Nishitani T, Nemoto T, Ueno T, Kominami E (2002). "Mammalian Apg12p, but not the Apg12p.Apg5p conjugate, facilitates LC3 processing". Biochem. Biophys. Res. Commun. 296 (5): 1164–1170. doi:10.1016/S0006-291X(02)02057-0. PMID12207896.
Tanida I, Tanida-Miyake E, Nishitani T, Komatsu M, Yamazaki H, Ueno T, et al. (2002). "Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs". Biochem. Biophys. Res. Commun. 292 (1): 256–262. doi:10.1006/bbrc.2002.6645. PMID11890701.