Variational autoencoder

In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling.[1] It is part of the families of probabilistic graphical models and variational Bayesian methods.[2]

The basic scheme of a variational autoencoder. The model receives as input. The encoder compresses it into the latent space. The decoder receives as input the information sampled from the latent space and produces as similar as possible to .

In addition to being seen as an autoencoder neural network architecture, variational autoencoders can also be studied within the mathematical formulation of variational Bayesian methods, connecting a neural encoder network to its decoder through a probabilistic latent space (for example, as a multivariate Gaussian distribution) that corresponds to the parameters of a variational distribution.

Thus, the encoder maps each point (such as an image) from a large complex dataset into a distribution within the latent space, rather than to a single point in that space. The decoder has the opposite function, which is to map from the latent space to the input space, again according to a distribution (although in practice, noise is rarely added during the decoding stage). By mapping a point to a distribution instead of a single point, the network can avoid overfitting the training data. Both networks are typically trained together with the usage of the reparameterization trick, although the variance of the noise model can be learned separately.[citation needed]

Although this type of model was initially designed for unsupervised learning,[3][4] its effectiveness has been proven for semi-supervised learning[5][6] and supervised learning.[7]

Overview of architecture and operation

edit

A variational autoencoder is a generative model with a prior and noise distribution respectively. Usually such models are trained using the expectation-maximization meta-algorithm (e.g. probabilistic PCA, (spike & slab) sparse coding). Such a scheme optimizes a lower bound of the data likelihood, which is usually intractable, and in doing so requires the discovery of q-distributions, or variational posteriors. These q-distributions are normally parameterized for each individual data point in a separate optimization process. However, variational autoencoders use a neural network as an amortized approach to jointly optimize across data points. This neural network takes as input the data points themselves, and outputs parameters for the variational distribution. As it maps from a known input space to the low-dimensional latent space, it is called the encoder.

The decoder is the second neural network of this model. It is a function that maps from the latent space to the input space, e.g. as the means of the noise distribution. It is possible to use another neural network that maps to the variance, however this can be omitted for simplicity. In such a case, the variance can be optimized with gradient descent.

To optimize this model, one needs to know two terms: the "reconstruction error", and the Kullback–Leibler divergence (KL-D). Both terms are derived from the free energy expression of the probabilistic model, and therefore differ depending on the noise distribution and the assumed prior of the data. For example, a standard VAE task such as IMAGENET is typically assumed to have a gaussianly distributed noise; however, tasks such as binarized MNIST require a Bernoulli noise. The KL-D from the free energy expression maximizes the probability mass of the q-distribution that overlaps with the p-distribution, which unfortunately can result in mode-seeking behaviour. The "reconstruction" term is the remainder of the free energy expression, and requires a sampling approximation to compute its expectation value.[8]

More recent approaches replace Kullback–Leibler divergence (KL-D) with various statistical distances, see see section "Statistical distance VAE variants" below..

Formulation

edit

From the point of view of probabilistic modeling, one wants to maximize the likelihood of the data   by their chosen parameterized probability distribution  . This distribution is usually chosen to be a Gaussian   which is parameterized by   and   respectively, and as a member of the exponential family it is easy to work with as a noise distribution. Simple distributions are easy enough to maximize, however distributions where a prior is assumed over the latents   results in intractable integrals. Let us find   via marginalizing over  .

 

where   represents the joint distribution under   of the observable data   and its latent representation or encoding  . According to the chain rule, the equation can be rewritten as

 

In the vanilla variational autoencoder,   is usually taken to be a finite-dimensional vector of real numbers, and   to be a Gaussian distribution. Then   is a mixture of Gaussian distributions.

It is now possible to define the set of the relationships between the input data and its latent representation as

  • Prior  
  • Likelihood  
  • Posterior  

Unfortunately, the computation of   is expensive and in most cases intractable. To speed up the calculus to make it feasible, it is necessary to introduce a further function to approximate the posterior distribution as

 

with   defined as the set of real values that parametrize  . This is sometimes called amortized inference, since by "investing" in finding a good  , one can later infer   from   quickly without doing any integrals.

In this way, the problem is to find a good probabilistic autoencoder, in which the conditional likelihood distribution   is computed by the probabilistic decoder, and the approximated posterior distribution   is computed by the probabilistic encoder.

Parametrize the encoder as  , and the decoder as  .

Evidence lower bound (ELBO)

edit

Like many deep learning implementations, training typically uses a differentiable loss function and backpropagation.

For variational autoencoders, the idea is to jointly optimize the generative model parameters   to reduce the reconstruction error between the input and the output, and   to make   as close as possible to  . As reconstruction loss, mean squared error and cross entropy are often used.

As distance loss between the two distributions the Kullback–Leibler divergence   is a good choice to squeeze   under  .[8][9]

The distance loss just defined is expanded as

 

Now define the evidence lower bound (ELBO): Maximizing the ELBO is equivalent to simultaneously maximizing   and minimizing  . That is, maximizing the log-likelihood of the observed data, and minimizing the divergence of the approximate posterior   from the exact posterior  .

The form given is not very convenient for maximization, but the following, equivalent form, is: where   is implemented as  , since that is, up to an additive constant, what   yields. That is, we model the distribution of   conditional on   to be a Gaussian distribution centered on  . The distribution of   and   are often also chosen to be Gaussians as   and  , with which we obtain by the formula for KL divergence of Gaussians: Here   is the dimension of  . For a more detailed derivation and more interpretations of ELBO and its maximization, see its main page.

Reparameterization

edit
 
The scheme of the reparameterization trick. The randomness variable   is injected into the latent space   as external input. In this way, it is possible to backpropagate the gradient without involving stochastic variable during the update.

To efficiently search for  the typical method is gradient ascent.

It is straightforward to find However,  does not allow one to put the   inside the expectation, since   appears in the probability distribution itself. The reparameterization trick (also known as stochastic backpropagation[10]) bypasses this difficulty.[8][11][12]

The most important example is when   is normally distributed, as  .

 
The scheme of a variational autoencoder after the reparameterization trick

This can be reparametrized by letting   be a "standard random number generator", and construct   as  . Here,   is obtained by the Cholesky decomposition: Then we have and so we obtained an unbiased estimator of the gradient, allowing stochastic gradient descent.

Since we reparametrized  , we need to find  . Let   be the probability density function for  , then [clarification needed] where   is the Jacobian matrix of   with respect to  . Since  , this is  

Variations

edit

Many variational autoencoders applications and extensions have been used to adapt the architecture to other domains and improve its performance.

 -VAE is an implementation with a weighted Kullback–Leibler divergence term to automatically discover and interpret factorised latent representations. With this implementation, it is possible to force manifold disentanglement for   values greater than one. This architecture can discover disentangled latent factors without supervision.[13][14]

The conditional VAE (CVAE), inserts label information in the latent space to force a deterministic constrained representation of the learned data.[15]

Some structures directly deal with the quality of the generated samples[16][17] or implement more than one latent space to further improve the representation learning.

Some architectures mix VAE and generative adversarial networks to obtain hybrid models.[18][19][20]

Statistical distance VAE variants

edit

After the initial work of Diederik P. Kingma and Max Welling.[21] several procedures were proposed to formulate in a more abstract way the operation of the VAE. In these approaches the loss function is composed of two parts :

  • the usual reconstruction error part which seeks to ensure that the encoder-then-decoder mapping   is as close to the identity map as possible; the sampling is done at run time from the empirical distribution   of objects available (e.g., for MNIST or IMAGENET this will be the empirical probability law of all images in the dataset). This gives the term:  .
  • a variational part that ensures that, when the empirical distribution   is passed through the encoder  , we recover the target distribution, denoted here   that is usually taken to be a Multivariate normal distribution. We will denote   this pushforward measure which in practice is just the empirical distribution obtained by passing all dataset objects through the encoder  . In order to make sure that   is close to the target  , a Statistical distance   is invoked and the term   is added to the loss.

We obtain the final formula for the loss:  

The statistical distance   requires special properties, for instance is has to be posses a formula as expectation because the loss function will need to be optimized by stochastic optimization algorithms. Several distances can be chosen and this gave rise to several flavors of VAEs:

See also

edit

References

edit
  1. ^ Kingma, Diederik P.; Welling, Max (2022-12-10). "Auto-Encoding Variational Bayes". arXiv:1312.6114 [stat.ML].
  2. ^ Pinheiro Cinelli, Lucas; et al. (2021). "Variational Autoencoder". Variational Methods for Machine Learning with Applications to Deep Networks. Springer. pp. 111–149. doi:10.1007/978-3-030-70679-1_5. ISBN 978-3-030-70681-4. S2CID 240802776.
  3. ^ Dilokthanakul, Nat; Mediano, Pedro A. M.; Garnelo, Marta; Lee, Matthew C. H.; Salimbeni, Hugh; Arulkumaran, Kai; Shanahan, Murray (2017-01-13). "Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders". arXiv:1611.02648 [cs.LG].
  4. ^ Hsu, Wei-Ning; Zhang, Yu; Glass, James (December 2017). "Unsupervised domain adaptation for robust speech recognition via variational autoencoder-based data augmentation". 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). pp. 16–23. arXiv:1707.06265. doi:10.1109/ASRU.2017.8268911. ISBN 978-1-5090-4788-8. S2CID 22681625.
  5. ^ Ehsan Abbasnejad, M.; Dick, Anthony; van den Hengel, Anton (2017). Infinite Variational Autoencoder for Semi-Supervised Learning. pp. 5888–5897.
  6. ^ Xu, Weidi; Sun, Haoze; Deng, Chao; Tan, Ying (2017-02-12). "Variational Autoencoder for Semi-Supervised Text Classification". Proceedings of the AAAI Conference on Artificial Intelligence. 31 (1). doi:10.1609/aaai.v31i1.10966. S2CID 2060721.
  7. ^ Kameoka, Hirokazu; Li, Li; Inoue, Shota; Makino, Shoji (2019-09-01). "Supervised Determined Source Separation with Multichannel Variational Autoencoder". Neural Computation. 31 (9): 1891–1914. doi:10.1162/neco_a_01217. PMID 31335290. S2CID 198168155.
  8. ^ a b c Kingma, Diederik P.; Welling, Max (2013-12-20). "Auto-Encoding Variational Bayes". arXiv:1312.6114 [stat.ML].
  9. ^ "From Autoencoder to Beta-VAE". Lil'Log. 2018-08-12.
  10. ^ Rezende, Danilo Jimenez; Mohamed, Shakir; Wierstra, Daan (2014-06-18). "Stochastic Backpropagation and Approximate Inference in Deep Generative Models". International Conference on Machine Learning. PMLR: 1278–1286. arXiv:1401.4082.
  11. ^ Bengio, Yoshua; Courville, Aaron; Vincent, Pascal (2013). "Representation Learning: A Review and New Perspectives". IEEE Transactions on Pattern Analysis and Machine Intelligence. 35 (8): 1798–1828. arXiv:1206.5538. doi:10.1109/TPAMI.2013.50. ISSN 1939-3539. PMID 23787338. S2CID 393948.
  12. ^ Kingma, Diederik P.; Rezende, Danilo J.; Mohamed, Shakir; Welling, Max (2014-10-31). "Semi-Supervised Learning with Deep Generative Models". arXiv:1406.5298 [cs.LG].
  13. ^ Higgins, Irina; Matthey, Loic; Pal, Arka; Burgess, Christopher; Glorot, Xavier; Botvinick, Matthew; Mohamed, Shakir; Lerchner, Alexander (2016-11-04). beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. NeurIPS.
  14. ^ Burgess, Christopher P.; Higgins, Irina; Pal, Arka; Matthey, Loic; Watters, Nick; Desjardins, Guillaume; Lerchner, Alexander (2018-04-10). "Understanding disentangling in β-VAE". arXiv:1804.03599 [stat.ML].
  15. ^ Sohn, Kihyuk; Lee, Honglak; Yan, Xinchen (2015-01-01). Learning Structured Output Representation using Deep Conditional Generative Models (PDF). NeurIPS.
  16. ^ Dai, Bin; Wipf, David (2019-10-30). "Diagnosing and Enhancing VAE Models". arXiv:1903.05789 [cs.LG].
  17. ^ Dorta, Garoe; Vicente, Sara; Agapito, Lourdes; Campbell, Neill D. F.; Simpson, Ivor (2018-07-31). "Training VAEs Under Structured Residuals". arXiv:1804.01050 [stat.ML].
  18. ^ Larsen, Anders Boesen Lindbo; Sønderby, Søren Kaae; Larochelle, Hugo; Winther, Ole (2016-06-11). "Autoencoding beyond pixels using a learned similarity metric". International Conference on Machine Learning. PMLR: 1558–1566. arXiv:1512.09300.
  19. ^ Bao, Jianmin; Chen, Dong; Wen, Fang; Li, Houqiang; Hua, Gang (2017). "CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training". pp. 2745–2754. arXiv:1703.10155 [cs.CV].
  20. ^ Gao, Rui; Hou, Xingsong; Qin, Jie; Chen, Jiaxin; Liu, Li; Zhu, Fan; Zhang, Zhao; Shao, Ling (2020). "Zero-VAE-GAN: Generating Unseen Features for Generalized and Transductive Zero-Shot Learning". IEEE Transactions on Image Processing. 29: 3665–3680. Bibcode:2020ITIP...29.3665G. doi:10.1109/TIP.2020.2964429. ISSN 1941-0042. PMID 31940538. S2CID 210334032.
  21. ^ Kingma, Diederik P.; Welling, Max (2022-12-10). "Auto-Encoding Variational Bayes". arXiv:1312.6114 [stat.ML].
  22. ^ Kolouri, Soheil; Pope, Phillip E.; Martin, Charles E.; Rohde, Gustavo K. (2019). "Sliced Wasserstein Auto-Encoders". International Conference on Learning Representations. International Conference on Learning Representations. ICPR.
  23. ^ Turinici, Gabriel (2021). "Radon-Sobolev Variational Auto-Encoders". Neural Networks. 141: 294–305. arXiv:1911.13135. doi:10.1016/j.neunet.2021.04.018. ISSN 0893-6080. PMID 33933889.
  24. ^ Gretton, A.; Li, Y.; Swersky, K.; Zemel, R.; Turner, R. (2017). "A Polya Contagion Model for Networks". IEEE Transactions on Control of Network Systems. 5 (4): 1998–2010. arXiv:1705.02239. doi:10.1109/TCNS.2017.2781467.
  25. ^ Tolstikhin, I.; Bousquet, O.; Gelly, S.; Schölkopf, B. (2018). "Wasserstein Auto-Encoders". arXiv:1711.01558 [stat.ML].
  26. ^ Louizos, C.; Shi, X.; Swersky, K.; Li, Y.; Welling, M. (2019). "Kernelized Variational Autoencoders". arXiv:1901.02401 [astro-ph.CO].

Further reading

edit