Konkōmyōsaishōōkyō Ongi (金( こん ) 光( こう ) 明( みょう ) 最( さい ) 勝( しょう ) 王( おう ) 経( きょう ) 音( おん ) 義( ぎ ) , 'Readings of Golden Light Sutra ')
Chūō-ku (中( ちゅう ) 央( おう ) 区( く ) , "Central Ward")
ポケットモンスター R( ルビー ) ・S( サファイア ) (Poketto Monsutā Rubī-Safaia) (List of Pokémon manga )
ポケットモンスター D( ダイヤモンド ) ・P( パール ) (Poketto Monsutā Daiyamondo-Pāru)
ポケットモンスター H( ハート ) G( ゴールド ) S( ソウル ) S( シルバー ) ジョウの大( だい ) 冒( ぼう ) 険( けん ) (Poketto Monsutā Hātogōrudo Sourushirubā: Jō no Dai Bōken)
ポケットモンスター B( ブラック ) ・W( ホワイト ) (Poketto Monsutā Burakku-Howaito)
ポケットモンスター B( ブラック ) ・W( ホワイト ) グッドパートナーズ (Poketto Monsutā Burakku-Howaito: Guddo Pātonāzu)
新( しん ) 幹( かん ) 線( せん ) 923形( けい ) 電( でん ) 車( しゃ ) は、東海旅客鉄道( とうかいりょかくてつどう ) および西日本旅客鉄道( にしにほんりょかくてつどう ) に在籍( さいせき ) する、東海道( とうかいどう ) ・山陽新幹線用新幹線電気軌道総合試験車( さんようしんかんせんようしんかんせんでんききどうそうごうしけんしゃ ) である。
石家荘正定国際空港( せっかそうまささだこくさいくうこう ) は中華人民共和国河北省石家荘市正定県( ちゅうかじんみんきょうわこくかほくしょうせっかそうしせいていけん ) にある空港( くうこう ) 。石家荘市( せっかそうし ) の中心部( ちゅうしんぶ ) からは32km( キロメートル ) 離( はなれ ) はなれている。
このは我( われ ) 々( われ ) の志( こころざし ) です。
弾性( エラスティシティ )
世( せ ) 界( かい ) は死( し ) コロナウイルス世( せ ) 界( かい ) は死( し )
x
(
x
+
1
)
(
x
+
2
)
(
x
+
3
)
=
x
(
x
+
1
)
(
x
+
2
)
(
x
+
3
)
(
x
+
4
)
,
x
1
=
−
3
,
x
2
=
−
2
,
x
3
=
−
1
,
x
4
=
0
{\displaystyle x(x+1)(x+2)(x+3)=x(x+1)(x+2)(x+3)(x+4),{\text{ }}x_{1}=-3,{\text{ }}x_{2}=-2,{\text{ }}x_{3}=-1,{\text{ }}x_{4}=0}
(
x
+
3
)
(
x
−
3
)
=
x
2
−
9
{\displaystyle (x+3)(x-3)=x^{2}-9}
1
x
=
1
x
=
1
x
∗
x
x
=
x
x
{\displaystyle {\begin{aligned}{\sqrt {\frac {1}{x}}}&={\frac {1}{\sqrt {x}}}\\&={\frac {1}{\sqrt {x}}}*{\frac {\sqrt {x}}{\sqrt {x}}}\\&={\frac {\sqrt {x}}{x}}\\\end{aligned}}}
m
=
y
2
−
y
1
x
2
−
x
1
{\displaystyle m={\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}}
Probability of a bomb being in a specific square in Minesweeper
=
Number of bomb arrangements with a bomb in a specific square
Total number of possible bomb arrangements in the remaining squares
{\displaystyle {\text{Probability of a bomb being in a specific square in Minesweeper}}={\frac {\text{Number of bomb arrangements with a bomb in a specific square}}{\text{Total number of possible bomb arrangements in the remaining squares}}}}
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
+
9
+
.
.
.
{\displaystyle 1+{\sqrt {2+{\sqrt {3+{\sqrt {4+{\sqrt {5+{\sqrt {6+{\sqrt {7+{\sqrt {8+{\sqrt {9+...}}}}}}}}}}}}}}}}}
1
1
+
2
1
+
3
1
+
.
.
.
{\displaystyle {\frac {1}{1+{\frac {2}{1+{\frac {3}{1+...}}}}}}}
1
2
3
4
5
6
7
8
9
10
{\displaystyle {\frac {1}{\frac {2}{\frac {3}{\frac {4}{\frac {5}{\frac {6}{\frac {7}{\frac {8}{\frac {9}{10}}}}}}}}}}}
a
b
+
c
d
=
a
d
+
b
c
b
d
{\displaystyle {\frac {a}{b}}+{\frac {c}{d}}={\frac {ad+bc}{bd}}}
126
=
3
∗
42
=
3
∗
3
∗
14
=
3
14
{\displaystyle {\begin{aligned}{\sqrt {126}}&={\sqrt {3*42}}\\&={\sqrt {3*3*14}}\\&=3{\sqrt {14}}\\\end{aligned}}}
1
+
2
+
3
3
+
4
4
+
.
.
.
{\displaystyle 1+{\sqrt {2}}+{\sqrt[{3}]{3}}+{\sqrt[{4}]{4}}+...}
1
=
1
{\displaystyle {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}=1}
1
∞
=
1
{\displaystyle 1^{\infty }=1}
(
0
!
+
2
2
+
∫
∫
∫
∫
0
0
d
3
d
d
3
∫
0
0
d
3
d
d
3
d
2
d
d
2
∫
∫
0
0
d
3
d
d
3
∫
0
0
d
3
d
d
3
d
2
d
d
2
d
∫
∫
∫
0
0
d
3
d
d
3
∫
0
0
d
3
d
d
3
d
2
d
d
2
∫
∫
0
0
d
3
d
d
3
∫
0
0
d
3
d
d
3
d
2
d
d
2
d
0
d
d
0
d
d
∫
∫
∫
0
0
d
3
d
d
3
∫
0
0
d
3
d
d
3
d
2
d
d
2
∫
∫
0
0
d
3
d
d
3
∫
0
0
d
3
d
d
3
d
2
d
d
2
d
∫
∫
∫
0
0
d
3
d
d
3
∫
0
0
d
3
d
d
3
d
2
d
d
2
∫
∫
0
0
d
3
d
d
3
∫
0
0
d
3
d
d
3
d
2
d
d
2
d
0
0
d
d
0
d
d
∑
n
=
3
34
5
56
D
d
D
)
(
cot
(
τ
2
t
)
d
d
x
(
2
x
−
x
)
⋅
2
cos
(
τ
π
π
t
)
17
2
3
+
3
2
+
1
−
35
⋅
tan
2
(
5
2
−
ceil
(
π
)
1
+
2
+
3
+
1
3
2
⋅
2
3
⋅
3
2
π
π
t
)
,
(
1
−
sin
2
(
2
π
t
)
)
cos
(
2
π
t
)
sin
(
π
2
)
⋅
cos
(
τ
)
cos
(
0
)
cos
(
2
π
)
+
(
∑
n
=
1
3
1
n
−
2
)
−
2
⋅
(
3
+
4
)
9
+
2
2
+
9
+
1
1
9
−
2
+
1
1
2
−
6
−
(
81
4
⋅
4
!
(
2
+
1
)
!
)
+
5
)
−
4
+
4
2
−
4
(
1
)
(
3
)
2
(
1
)
−
4
−
4
2
−
4
(
1
)
(
3
)
2
(
1
)
⋅
(
3
!
2
!
⋅
1
!
0
!
)
⋅
0
!
4
!
5
!
⋅
(
3
!
−
1
!
)
∑
n
=
∑
n
2
=
1
1
n
2
∑
n
2
=
1
1
0
0
0
0
0
0
n
2
(
17
7
−
41
⋅
10
7
−
7
⋅
36
3
−
5
⋅
7
4
−
8
2
2
1
−
7
⋅
7
+
7
)
15
5
−
759373
(
11111
−
1111
+
111
−
11
+
1
)
10
(
1
+
1
+
1
+
1
)
+
10
(
1
+
1
)
+
10
0
1
+
1
−
1
+
1
−
1
+
−
1
−
−
1
−
1
−
−
1
2
n
4
!
4
+
2
4
∑
n
3
=
∑
n
2
=
1
1
n
2
∑
n
2
=
1
1
2
2
1
+
1
1
+
1
1
n
2
n
3
(
∑
n
0
=
∑
n
2
=
1
1
n
2
∑
n
2
=
1
1
n
2
n
0
∑
n
4
=
∑
n
2
=
1
1
n
2
∑
n
2
=
1
1
n
2
n
4
−
(
∑
n
0
=
∑
n
2
=
1
1
n
2
∑
n
2
=
1
1
n
2
n
0
∑
n
4
=
∑
n
2
=
1
1
n
2
∑
n
2
=
1
1
n
2
n
4
)
)
5555555555555
−
0
0
0
0
0
0
0
⋅
0
0
⋅
0
100
10
1
0
123
⋅
321
⋅
10
5
⋅
0
0
0
0
7734124
3379
⋅
10
4
63
2
⋅
45
+
1289
−
326
6
843369
−
3
1001601
⋅
2
!
!
!
!
!
!
!
(
log
4
(
2
16
)
−
1
)
!
−
4
+
2
2
2
+
2
(
(
1
2
+
2
3
+
3
4
+
4
5
)
−
1111
)
8
9
−
8
7
−
7
6
−
2
26
64894063
⋅
3
⋅
3
2
⋅
3
0
5
5
5
5
5
5
1
+
8
3
1
+
1
1
+
1
+
1
1
+
1
+
1
+
1
−
5
5
5
5
5
5
1
+
τ
2
∫
−
1
1
3
2
x
2
d
x
(
∫
−
∞
∞
e
−
x
2
d
x
)
sgn
(
|
t
|
+
1
10
10
)
−
sgn
(
−
|
t
|
−
1
10
10
)
−
(
(
4913
3
−
1
)
1
2
−
3
!
2
!
)
+
11
−
3
5
+
18
2
−
e
1
∞
+
log
(
4
!
2
−
2
!
)
−
1
1
1
1
0
1234567890
−
1234567891
+
234
−
232
+
12345
−
12345
+
321
−
321
+
0
+
0
1
+
0
⋅
0
1
⋅
1
1
+
0
−
1
+
1
1
−
−
5
−
5
floor
(
distance
(
(
distance
(
(
0
−
0
,
0
+
0
)
,
(
1
,
1
)
)
2
,
distance
(
(
2
2
−
1
1
,
3
)
,
(
2
2
+
1
2
,
3
)
)
)
,
(
2
floor
(
e
)
,
ceil
(
π
)
)
)
)
ceil
(
distance
(
(
distance
(
(
2
2
−
1
1
,
3
)
,
(
2
2
+
1
2
,
3
)
)
,
distance
(
(
7
3
+
4
,
1
1
0
)
,
(
0
,
1
569
)
)
2
)
,
(
floor
(
τ
2
)
,
2
ceil
(
2
)
)
)
)
111111111111111111111111111111111111111111111111111111111111111111111111111
⋅
(
1
−
1
)
+
1
+
(
∏
k
=
∑
m
=
0
5
4
1
k
∫
12
−
12
x
2
d
x
)
⋅
sin
(
π
)
|
cos
(
π
)
|
sin
(
π
2
)
tan
(
0
)
cot
(
1
)
!
tan
(
0
⋅
0
)
cot
(
111
)
sinh
−
1
(
|
1
|
)
cosh
(
π
)
tan
−
1
(
1
)
192.4512
!
+
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
1
1
+
1
1
+
1
1
+
1
1
1
1
+
1
1
−
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
{
(
34
2
−
12
3
)
⋅
2
6
3
!
!
+
23
⋅
3
>
6
!
−
3
+
ln
(
45
e
)
−
13
2
−
1
:
1
,
0
}
|
(
|
(
|
−
(
|
−
3
|
−
3
|
|
)
|
)
|
)
3
+
3
(
|
(
|
−
(
|
−
6
|
−
6
|
|
)
|
)
|
)
6
+
6
1
−
tan
2
(
0
)
(
1
−
sin
2
(
0
)
)
(
1
−
cos
2
(
0
)
)
+
floor
(
log
(
e
5
)
)
⋅
ceil
(
1
+
5
2
)
ln
(
ln
(
e
e
)
)
log
(
log
(
10
10
)
)
+
3
2
+
3
!
2
(
5
2
+
1
)
−
1
45
⋅
5
26
⋅
100
+
1
2
2
nPr
(
3
2
+
2
2
,
6
2
−
5
2
−
3
2
)
−
nPr
(
5
3
−
5
!
,
2
)
9
⋅
5
−
(
5
+
6
)
⋅
4
−
1
2
nPr
(
log
(
log
(
10
(
ln
(
e
5
)
⋅
3
−
5
)
)
10
)
,
gcf
(
18
,
4
)
)
⋅
(
nCr
(
3
2
1
,
2
2
1
)
−
3
!
(
1
∞
∞
∞
+
∞
−
∞
)
∞
⋅
∞
∞
+
∞
!
0
(
1
∞
)
!
)
4
nPr
(
3
!
,
5
!
(
lcm
(
18
,
21
)
−
5
3
)
6
2
+
2
2
)
+
floor
(
e
i
π
+
1
with
i
=
−
1
)
|
{
{
}
=
{
}
{
}
+
{
}
{
}
⋅
{
}
:
{
}
,
{
}
{
}
{
}
}
+
τ
−
π
π
−
d
d
x
x
+
∫
d
d
x
x
d
d
y
y
d
d
z
z
d
z
+
|
1
|
−
−
|
1
1
|
−
|
1
1
1
1
|
−
|
1
1
1
1
|
|
1
1
1
1
|
−
−
|
1
1
1
1
|
|
1
1
1
1
|
−
|
1
1
1
1
|
−
|
1
1
|
−
−
|
1
|
+
total
(
[
1...45
]
)
∑
n
=
1
45
n
⋅
∑
n
=
0
44
(
n
+
1
)
total
(
[
45...1
]
)
−
0
0
{\displaystyle {\frac {\frac {\frac {\left(0!+2^{2}+\int _{\int _{\int _{\int _{0}^{0}d_{3}dd_{3}}^{\int _{0}^{0}d_{3}dd_{3}}d_{2}dd_{2}}^{\int _{\int _{0}^{0}d_{3}dd_{3}}^{\int _{0}^{0}d_{3}dd_{3}}d_{2}dd_{2}}d\int _{\int _{\int _{0}^{0}d_{3}dd_{3}}^{\int _{0}^{0}d_{3}dd_{3}}d_{2}dd_{2}}^{\int _{\int _{0}^{0}d_{3}dd_{3}}^{\int _{0}^{0}d_{3}dd_{3}}d_{2}dd_{2}}d_{0}dd_{0}dd}^{\int _{\int _{\int _{0}^{0}d_{3}dd_{3}}^{\int _{0}^{0}d_{3}dd_{3}}d_{2}dd_{2}}^{\int _{\int _{0}^{0}d_{3}dd_{3}}^{\int _{0}^{0}d_{3}dd_{3}}d_{2}dd_{2}}d\int _{\int _{\int _{0}^{0}d_{3}dd_{3}}^{\int _{0}^{0}d_{3}dd_{3}}d_{2}dd_{2}}^{\int _{\int _{0}^{0}d_{3}dd_{3}}^{\int _{0}^{0}d_{3}dd_{3}}d_{2}dd_{2}}d_{0}^{0}dd_{0}dd}\sum _{n=3}^{34}{\frac {5}{56}}DdD\right){\frac {\left({\frac {\cot \left({\sqrt {\tau }}^{2}t\right)}{{\frac {d}{dx}}\left(2x-x\right)}}\cdot {\frac {2\cos \left({\frac {\tau }{\pi }}\pi t\right)}{{\frac {17}{2^{3}+3^{2}}}+1^{-35}}}\cdot \tan ^{2}\left({\frac {\frac {5^{2}-\operatorname {ceil} \left(\pi \right)}{1+2+3+1}}{{\frac {3}{2}}\cdot {\frac {2}{3}}\cdot {\frac {3}{2}}}}{\sqrt {\pi }}{\sqrt {\pi }}t\right),{\frac {{\frac {\left(1-\sin ^{2}\left(2\pi t\right)\right)}{{\frac {\cos \left(2\pi t\right)}{\sin \left({\frac {\pi }{2}}\right)}}\cdot {\frac {\cos \left(\tau \right)}{\frac {\cos \left(0\right)}{\cos \left(2\pi \right)}}}}}+\left(\sum _{n=1}^{3}{\frac {1}{n^{-2}}}\right)-2\cdot {\frac {\left(3+4\right)}{\frac {{\frac {9+2}{2+9}}+{\frac {1}{1}}}{{\sqrt {9}}-2+1}}}}{{\sqrt {\frac {1}{2^{-6}}}}-\left({\sqrt[{4}]{81}}\cdot {\frac {4!}{\left(2+1\right)!}}\right)+5}}\right){\frac {\frac {-4+{\sqrt {4^{2}-4\left(1\right)\left(3\right)}}}{2\left(1\right)}}{\frac {-4-{\sqrt {4^{2}-4\left(1\right)\left(3\right)}}}{2\left(1\right)}}}\cdot {\frac {\left({\frac {3!}{2!}}\cdot {\frac {1!}{0!}}\right)\cdot 0!}{{\frac {4!}{5!}}\cdot \left(3!-1!\right)}}}{\sum _{n=\sum _{n_{2}=1}^{1}n_{2}}^{\sum _{n_{2}=1}^{1^{0^{0^{0^{0^{0^{0}}}}}}}n_{2}}{\frac {{\frac {\frac {\left(17^{7}-41\cdot 10^{7}-7\cdot 36^{3}-5\cdot 7^{4}-{\frac {8^{2}}{2^{1}}}-7\cdot 7+7\right)}{15^{5}-759373}}{\frac {\frac {\left(11111-1111+111-11+1\right)}{10^{\left(1+1+1+1\right)}+10^{\left(1+1\right)}+10^{0}}}{1+1-1+1-1+-1--1-1--1}}}2n}{\sqrt {\frac {4!}{4+{\sqrt {2^{\sqrt {4}}}}}}}}\sum _{n_{3}=\sum _{n_{2}=1}^{1}n_{2}}^{\sum _{n_{2}=1}^{\frac {{\frac {\frac {1}{\frac {2}{2}}}{1}}+1}{1+{\frac {1}{1}}}}n_{2}}n_{3}^{\frac {\left(\sum _{n_{0}=\sum _{n_{2}=1}^{1}n_{2}}^{\sum _{n_{2}=1}^{1}n_{2}}n_{0}\sum _{n_{4}=\sum _{n_{2}=1}^{1}n_{2}}^{\sum _{n_{2}=1}^{1}n_{2}}n_{4}-\left(\sum _{n_{0}=\sum _{n_{2}=1}^{1}n_{2}}^{\sum _{n_{2}=1}^{1}n_{2}}n_{0}\sum _{n_{4}=\sum _{n_{2}=1}^{1}n_{2}}^{\sum _{n_{2}=1}^{1}n_{2}}n_{4}\right)\right)}{5555555555555}}-{\frac {\frac {0^{0^{0^{0}}}0^{0^{0}}\cdot 0^{0}\cdot 0^{100^{10^{1^{0}}}}}{123\cdot 321\cdot 10^{5}\cdot 0^{0^{0^{0}}}}}{{\frac {\frac {7734124}{3379\cdot 10^{4}}}{{\sqrt {63^{2}}}\cdot 45}}+{\frac {\frac {1289-326^{6}}{843369^{-3}}}{1001601}}}}}}\cdot 2!!!!!!!}{{\frac {\left(\log _{4}\left({\sqrt {2}}^{16}\right)-1\right)!-{\frac {4+2}{2^{2}+2}}}{\frac {\frac {\left(\left(1^{2}+2^{3}+3^{4}+4^{5}\right)-1111\right)}{{\frac {8^{9}-8^{7}-7^{6}-2^{26}}{64894063\cdot 3}}\cdot 3^{2}\cdot 3^{0}}}{{\frac {5}{\frac {5}{\frac {5}{\frac {5}{\frac {5}{\frac {5}{1}}}}}}}+{\frac {\frac {\frac {8}{3}}{\frac {1+1}{1+1+1}}}{1+1+1+1}}-{\frac {5}{\frac {5}{\frac {5}{\frac {5}{\frac {5}{\frac {5}{1}}}}}}}}}}+{\frac {\frac {{\sqrt {\frac {\tau }{2}}}\int _{-1}^{1}{\frac {3}{2}}x^{2}dx}{\left(\int _{-\infty }^{\infty }e^{-x^{2}}dx\right)}}{\frac {\operatorname {sgn} \left(\left|t\right|+{\frac {1}{10^{10}}}\right)}{-\operatorname {sgn} \left(-\left|t\right|-{\frac {1}{10^{10}}}\right)}}}-{\frac {{\frac {\left(\left({\sqrt[{3}]{4913}}-1\right)^{\frac {1}{2}}-{\frac {3!}{2!}}\right)+{\frac {11-3}{5+{\sqrt {\frac {18}{2}}}}}-e^{\frac {1}{\infty }}+\log \left({\frac {4!}{2}}-2!\right)-1^{1^{1^{1^{0}}}}}{1234567890-1234567891+234-232+12345-12345+321-321}}+{\frac {\frac {0+{\frac {0}{1}}+{\frac {0\cdot 0}{1\cdot 1}}}{1+0-1+1}}{1--5-5}}}{\frac {\operatorname {floor} \left(\operatorname {distance} \left(\left(\operatorname {distance} \left(\left(0-0,0+0\right),\left(1,1\right)\right)^{2},\operatorname {distance} \left(\left(2^{2}-1^{1},3\right),\left(2^{2}+1^{2},3\right)\right)\right),\left(2\operatorname {floor} \left(e\right),{\sqrt {\operatorname {ceil} \left(\pi \right)}}\right)\right)\right)}{\frac {\operatorname {ceil} \left(\operatorname {distance} \left(\left(\operatorname {distance} \left(\left(2^{2}-1^{1},3\right),\left(2^{2}+1^{2},3\right)\right),\operatorname {distance} \left(\left({\frac {7}{3+4}},{\frac {1}{\frac {1}{0}}}\right),\left(0,1^{569}\right)\right)^{2}\right),\left(\operatorname {floor} \left({\frac {\tau }{2}}\right),{\sqrt {2^{\operatorname {ceil} \left({\sqrt {2}}\right)}}}\right)\right)\right)}{111111111111111111111111111111111111111111111111111111111111111111111111111\cdot \left(1-1\right)+1}}}}+\left(\prod _{k=\sum _{m=0}^{5}4}^{1}k\int _{12}^{-12}{\frac {x}{2}}dx\right)\cdot {\frac {\frac {\frac {\frac {\sin \left(\pi \right)}{\left|\cos \left(\pi \right)\right|}}{\sin \left({\frac {\pi }{2}}\right)}}{{\frac {\tan \left(0\right)}{\cot \left(1\right)}}!}}{{\frac {\frac {\frac {\tan \left(0\cdot 0\right)}{\cot \left(111\right)}}{\frac {\sinh ^{-1}\left(\left|1\right|\right)}{\cosh \left(\pi \right)}}}{\frac {\tan ^{-1}\left(1\right)}{192.4512}}}!}}+{\frac {{\frac {{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}+{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}}{{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}+{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}}}+{\frac {{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}+{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}}{{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}+{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}}}}{{\frac {{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}+{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}}{{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}+{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}}}+{\frac {{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}+{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}}{{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}+{\frac {{\frac {1}{1}}+{\frac {1}{1}}}{{\frac {1}{1}}+{\frac {1}{1}}}}}}}}-{\frac {\frac {\frac {1}{1}}{\frac {\frac {\frac {1}{1}}{\frac {1}{1}}}{\frac {1}{1}}}}{\frac {\frac {\frac {1}{1}}{\frac {1}{1}}}{\frac {1}{\frac {1}{\frac {1}{1}}}}}}}}{\left\{\left(34^{2}-12^{3}\right)\cdot {\frac {2^{6}}{3!!}}+23\cdot 3>{\sqrt {6!}}-{\sqrt {3}}+\ln \left(45e\right)-{\frac {13}{2-1}}:1,0\right\}\left|{\frac {\frac {\left(\left|\left(\left|-\left(\left|{\frac {-3}{\left|-3\right|}}\right|\right)\right|\right)\right|\right)}{3+3}}{\frac {\left(\left|\left(\left|-\left(\left|{\frac {-6}{\left|-6\right|}}\right|\right)\right|\right)\right|\right)}{6+6}}}{\frac {\sqrt {1-\tan ^{2}\left(0\right)}}{\frac {\sqrt {\left(1-\sin ^{2}\left(0\right)\right)}}{\sqrt {\left(1-\cos ^{2}\left(0\right)\right)}}}}+{\frac {\operatorname {floor} \left(\log \left(e^{5}\right)\right)\cdot \operatorname {ceil} \left({\frac {1+{\sqrt {5}}}{2}}\right)}{{\sqrt {\sqrt {{\frac {\ln \left(\ln \left(e^{e}\right)\right)}{\log \left(\log \left(10^{10}\right)\right)}}+{\frac {\frac {3^{2}+3!}{2\left(5^{2}+1\right)-1}}{\frac {\sqrt {45\cdot 5}}{\sqrt {26\cdot 100+1}}}}}}}^{2^{2}}}}{\frac {\frac {\operatorname {nPr} \left(3^{2}+{\sqrt {2^{2}}},6^{2}-5^{2}-3^{2}\right)-\operatorname {nPr} \left(5^{3}-5!,2\right)}{{\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {\sqrt {9\cdot 5-\left(5+6\right)\cdot 4}}}}}}}}}}-{\frac {1}{2}}}}{\operatorname {nPr} \left(\log \left(\log \left(10^{\left(\ln \left(e^{5}\right)\cdot 3-5\right)}\right)^{10}\right),\operatorname {gcf} \left(18,4\right)\right)}}\cdot {\frac {\left(\operatorname {nCr} \left(3^{2^{1}},2^{2^{1}}\right)-{\frac {3!}{{\frac {\left({\frac {1}{\infty ^{\infty ^{\infty }}}}+\infty ^{-\infty }\right)}{\infty \cdot \infty ^{\infty }+\infty !}}^{0^{\left({\frac {1}{\infty }}\right)!}}}}\right)}{4\operatorname {nPr} \left(3!,{\frac {5!\left(\operatorname {lcm} \left(18,21\right)-5^{3}\right)}{6^{2}+2^{2}}}\right)}}+\operatorname {floor} \left(e^{i\pi }+1\operatorname {with} i=-{\sqrt {1}}\right)\right|}}{\left\{\left\{\right\}={\frac {\left\{\right\}}{\left\{\right\}}}+{\frac {\left\{\right\}}{\left\{\right\}}}\cdot \left\{\right\}:\left\{\right\},{\frac {\frac {\left\{\right\}}{\left\{\right\}}}{\left\{\right\}}}\right\}+{\frac {\tau -\pi }{\pi }}-{\frac {d}{dx}}x+\int _{{\frac {d}{dx}}x}^{{\frac {d}{dy}}y}{\frac {d}{dz}}zdz+\left|1\right|--\left|{\frac {1}{1}}\right|-\left|{\frac {\frac {1}{1}}{\frac {1}{1}}}\right|-{\frac {\left|{\frac {\frac {1}{1}}{\frac {1}{1}}}\right|}{\left|{\frac {\frac {1}{1}}{\frac {1}{1}}}\right|}}--{\frac {\left|{\frac {\frac {1}{1}}{\frac {1}{1}}}\right|}{\left|{\frac {\frac {1}{1}}{\frac {1}{1}}}\right|}}-\left|{\frac {\frac {1}{1}}{\frac {1}{1}}}\right|-\left|{\frac {1}{1}}\right|--\left|1\right|+{\frac {\operatorname {total} \left(\left[1...45\right]\right)}{\sum _{n=1}^{45}n}}\cdot {\frac {\sum _{n=0}^{44}\left(n+1\right)}{\operatorname {total} \left(\left[45...1\right]\right)}}-0^{0}}}}