(Work on the Lambda-CDM metric)
The FLRW metric with two spatial dimensions suppressed is
Ignoring the effects of radiation in the early universe and assuming k = 0 and w = −1, the Lambda-CDM scale factor is
Putting (for reasons that will emerge later)
and
- ,
the Lambda-CDM scale factor may be rewritten as
Formally expanding the binomial and simplifying gives
Ratio of successive terms = which tends to as n tends to infinity.
Best Current Numerical Values
The WMAP five-year report gives
(Mp = megaparsec, Ga = gigayear).
These give
and
The path of the light ray satisfies .
________________________________________________________________________________________
An Apparent Contradiction (Unfortuanately this Word file contains special characters that won't print here. )
The following refers to "The Emperor's New Mind", OUP 1989(99), chapter 4, section 3 (Gödel’s Theorem).
On page 140, there is a statement, derived on the previous pages:
~x[x proves Pk(k)] = Pk(k)
With the simple substitution Pk(k) = S made to simplify the analysis and since k doesn’t feature explicitly in what follows, this is my assumption 00. There are two other assumptions: 01 and 02. From these three assumptions a contradiction emerges on lines 09 and 17. The question is: where and why does the contradiction arise?
The following uses a modified version of the scheme used in the OU course “Number Theory & Mathematical Logic”.
Line Statement Derivation/Comments Assumptions used
00 ~x [x proves S] = S Assumption 00 01 [x proves S] = [x . [x S]] Assumption 01 02 A x[A = x] Assumption 02 03 ~x[x . [x S]] = S Subs (0100) 00,01 04 ~S Assumption 04 05 x[x . [x S]] Subs/Taut (03,04) 00, 01, 04 06 y . [y S] Quant’r Removal (05) 00, 01, 04 07 S Taut (06) 00, 01, 04 08 ~S S Proof (04,07) 00, 01 09 S Taut (08) 00, 01 10 [~x [x proves S] = S] S Proof (00,09) 01 11 x[[~x [x proves S] = S] = x] Quant’r Removal (02) 02 12 [~x [x proves S] = S] = y Quant’r Removal (11) 02 13 y Subs (1200) 00, 02 14 y S Subs (1210) 01, 02 15 y . [y S] Taut (13,14) 00, 01, 02 16 x[x . [x S]] Quant’r Insertion (15) 00, 01, 02 17 ~S Taut (16,03) 00, 01, 02
HTML VERSION:
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns="http://www.w3.org/TR/REC-html40">
<head> <meta http-equiv=Content-Type content="text/html; charset=us-ascii"> <meta name=ProgId content=Word.Document> <meta name=Generator content="Microsoft Word 10"> <meta name=Originator content="Microsoft Word 10"> <link rel=File-List href="Penrose300427(Gödel)(Analysis)-01(Georgia11)_files/filelist.xml"> <title>Dear Professor Penrose, </title> <style> </style> </head>
<body lang=EN-GB style='tab-interval:62.35pt'>
An Apparent Contradiction<o:p></o:p>
<o:p> </o:p>
<o:p> </o:p>
The following refers to "The Emperor's New Mind", OUP 1989(99), chapter 4, section 3 (Gödel’s Theorem). <o:p></o:p>
<o:p> </o:p>
On page 140, there is a statement, derived on the previous pages: <o:p></o:p>
<o:p> </o:p>
~$x[Õx proves Pk(k)] = Pk(k)<o:p></o:p>
<o:p> </o:p>
With the simple substitution Pk(k) = S made to simplify the analysis and since k doesn’t feature explicitly in what follows, this is my assumption 00. There are two other assumptions: 01 and 02. From these three assumptions a contradiction emerges on lines 09 and 17. The question is: where and why does the contradiction arise? <o:p></o:p>
<o:p> </o:p>
The following uses a modified version of the scheme used in the OU course “Number Theory & Mathematical Logic”. <o:p></o:p>
<o:p> </o:p>
<o:p> </o:p>
Line<o:p></o:p> |
Statement<o:p></o:p> |
Derivation/Comments<o:p></o:p> |
Assumptions used<o:p></o:p> |
<o:p> </o:p> |
<o:p> </o:p> |
<o:p> </o:p> |
<o:p> </o:p> |
00<o:p></o:p> |
~$x [Õx proves S] = S<o:p></o:p> |
Assumption<o:p></o:p> |
00<o:p></o:p> |
01<o:p></o:p> |
[Õx proves S] = [Õx . [Õx Þ S]]<o:p></o:p> |
Assumption<o:p></o:p> |
01<o:p></o:p> |
02<o:p></o:p> |
"A $x[A = Õx]<o:p></o:p> |
Assumption<o:p></o:p> |
02<o:p></o:p> |
03<o:p></o:p> |
~$x[Õx . [Õx Þ S]] = S<o:p></o:p> |
Subs (01®00)<o:p></o:p> |
00,01<o:p></o:p> |
04<o:p></o:p> |
~S<o:p></o:p> |
Assumption<o:p></o:p> |
04<o:p></o:p> |
05<o:p></o:p> |
$x[Õx . [Õx Þ S]]<o:p></o:p> |
Subs/Taut (03,04)<o:p></o:p> |
00, 01, 04<o:p></o:p> |
06<o:p></o:p> |
Õy . [Õy Þ S]<o:p></o:p> |
Quant’r Removal (05)<o:p></o:p> |
00, 01, 04<o:p></o:p> |
07<o:p></o:p> |
S<o:p></o:p> |
Taut (06)<o:p></o:p> |
00, 01, 04<o:p></o:p> |
08<o:p></o:p> |
~S Þ S<o:p></o:p> |
Proof (04,07)<o:p></o:p> |
00, 01<o:p></o:p> |
09<o:p></o:p> |
S<o:p></o:p> |
Taut (08)<o:p></o:p> |
00, 01<o:p></o:p> |
10<o:p></o:p> |
[~$x [Õx proves S] = S] Þ S<o:p></o:p> |
Proof (00,09)<o:p></o:p> |
01<o:p></o:p> |
11<o:p></o:p> |
$x[[~$x [Õx proves S] = S] = Õx]<o:p></o:p> |
Quant’r Removal (02)<o:p></o:p> |
02<o:p></o:p> |
12<o:p></o:p> |
[~$x [Õx proves S] = S] = Õy<o:p></o:p> |
Quant’r Removal (11)<o:p></o:p> |
02<o:p></o:p> |
13<o:p></o:p> |
Õy<o:p></o:p> |
Subs (12®00)<o:p></o:p> |
00, 02<o:p></o:p> |
14<o:p></o:p> |
Õy Þ S<o:p></o:p> |
Subs (12®10)<o:p></o:p> |
01, 02<o:p></o:p> |
15<o:p></o:p> |
Õy . [Õy Þ S]<o:p></o:p> |
Taut (13,14)<o:p></o:p> |
00, 01, 02<o:p></o:p> |
16<o:p></o:p> |
$x[Õx . [Õx Þ S]]<o:p></o:p> |
Quant’r Insertion (15)<o:p></o:p> |
00, 01, 02<o:p></o:p> |
17<o:p></o:p> |
~S<o:p></o:p> |
Taut (16,03)<o:p></o:p> |
00, 01, 02<o:p></o:p> |
<o:p> </o:p>
<o:p> </o:p>
</body>
</html> --Dendropithecus (talk) 23:14, 21 May 2010 (UTC)