{{ {{{1}}}|{{{2}}}|
|P3-name=triangular prism|P3-image=Triangular prism.png|P3-image2=Triangular prism.png|P3-image3=Triangular prism.png|P3-dimage=Triangular bipyramid.png| |P3-Wythoff=2 3 | 2| |P3-W=--|P3-U=76(a)|P3-K=01(a)|P3-C=--|P3-V=6|P3-E=9|P3-F=5 |P3-Fdetail=3{4}+2{3}|P3-chi=2| |P3-vfig=4.4.3|P3-vfigimage=Triangular prism vertfig.svg |P3-group=D3h, [3,2], (*322), order 12| |P3-rotgroup=D3, [3,2]+, (322), order 6| |P3-B=Trip|P3-dual=Triangular dipyramid| |P3-special=|P3-schl=t{2,3} or {3}×{}| |P3-CD=
|P4-name=Cube|P4-image=Tetragonal prism.png|P4-image2=Image:Tetragonal prism.png|P4-image3=Image:Tetragonal prism.png|P4-dimage=Square bipyramid.png|
|P4-Wythoff=2 4 | 2
2 2 2 ||
|P4-W=--|P4-U=76(b)|P4-K=01(b)|P4-C=--|P4-V=8|P4-E=12|P4-F=6
|P4-Fdetail=4{4}+2{4}|P4-chi=2|
|P4-vfig=4.4.4|P4-vfigimage=Cube vertfig.png
|P4-group=D4h, [4,2], (*422), order 16|
|P4-rotgroup=D4, [4,2]+, (422), order 8|
|P4-B=Cube|P4-dual=Octahedron|
|P4-special=|P4-schl=t{2,4} or {4}×{}|
|P4-CD=
|P5-name=pentagonal prism|P5-image=Pentagonal prism.png|P5-image2=Pentagonal_Prism.svg|P5-image3=Pentagonal_Prism.svg|P5-dimage=Pentagonal bipyramid.png| |P5-Wythoff=2 5 | 2| |P5-W=--|P5-U=76(c)|P5-K=01(c)|P5-C=--|P5-V=10|P5-E=15|P5-F=7 |P5-Fdetail=5{4}+2{5}|P5-chi=2| |P5-vfig=4.4.5|P5-vfigimage=Pentagonal prism vertfig.png |P5-group=D5h, [5,2], (*522), order 20| |P5-rotgroup=D5, [5,2]+, (522), order 10| |P5-B=Pip|P5-dual=Pentagonal dipyramid| |P5-special=|P5-schl=t{2,5} or {5}×{}| |P5-CD=
|P6-name=hexagonal prism|P6-image=Hexagonal prism.png|P6-image2=Hexagonal_Prism.svg|P6-image3=Hexagonal_Prism.svg|P6-dimage=Hexagonal bipyramid.png|
|P6-Wythoff=2 6 | 2
2 2 3 ||
|P6-W=--|P6-U=76(d)|P6-K=01(d)|P6-C=--|P6-V=12|P6-E=18|P6-F=8
|P6-Fdetail=6{4}+2{6}|P6-chi=2|
|P6-vfig=4.4.6|P6-vfigimage=Hexagonal prism vertfig.png
|P6-group=D6h, [6,2], (*622), order 24|
|P6-rotgroup=D6, [6,2]+, (622), order 12|
|P6-B=Hip|P6-dual=Hexagonal dipyramid|
|P6-special=|P6-schl=t{2,6} or {6}×{}|
|P6-CD=
|P7-name=heptagonal prism|P7-image=Heptagonal prism.png|P7-image2=Heptagonal prism.png|P7-image3=Heptagonal prism.png|P7-dimage=Heptagonal bipyramid.png| |P7-Wythoff=2 7 | 2| |P7-W=--|P7-U=76(e)|P7-K=01(e)|P7-C=--|P7-V=14|P7-E=21|P7-F=9 |P7-Fdetail=7{4}+2{7}|P7-chi=2| |P7-vfig=4.4.7|P7-vfigimage=Heptagonal prism vertfig.png |P7-group=D7h, [7,2], (*722), order 28| |P7-rotgroup=D7, [7,2]+, (722), order 14| |P7-B=Hep|P7-dual=Heptagonal dipyramid| |P7-special=|P7-schl=t{2,7} or {7}×{}| |P7-CD=
|P8-name=octagonal prism|P8-image=Octagonal prism.png|P8-image2=Octagonal prism.png|P8-image3=Octagonal prism.png|P8-dimage=Octagonal bipyramid.png|
|P8-Wythoff=2 8 | 2
2 2 4 ||
|P8-W=--|P8-U=76(f)|P8-K=01(f)|P8-C=--|P8-V=16|P8-E=24|P8-F=10
|P8-Fdetail=8{4}+2{8}|P8-chi=2|
|P8-vfig=4.4.8|P8-vfigimage=Octagonal prism vertfig.png
|P8-group=D8h, [8,2], (*822), order 32|
|P8-rotgroup=D8, [8,2]+, (822), order 16|
|P8-B=Op|P8-dual=Octagonal dipyramid|
|P8-special=|P8-schl=t{2,8} or {8}×{}|
|P8-CD=
|P9-name=enneagonal prism|P9-image=Enneagonal prism.png|P9-image2=Enneagonal prism.png|P9-image3=Enneagonal prism.png|P9-dimage=Enneagonal bipyramid.png| |P9-Wythoff=2 9 | 2| |P9-W=--|P9-U=76(g)|P9-K=01(g)|P9-C=--|P9-V=18|P9-E=27|P9-F=11 |P9-Fdetail=9{4}+2{9}|P9-chi=2| |P9-vfig=4.4.9|P9-vfigimage=Enneagonal prism vertfig.png |P9-group=D9h, [9,2], (*922), order 36| |P9-rotgroup=D9, [9,2]+, (922), order 18| |P9-B=Ep|P9-dual=Enneagonal dipyramid| |P9-special=|P9-schl=t{2,9} or {9}×{}| |P9-CD=
|P10-name=decagonal prism|P10-image=Decagonal prism.png|P10-image2=Decagonal prism.png|P10-image3=Decagonal prism.png|P10-dimage=Decagonal bipyramid.png|
|P10-Wythoff=2 10 | 2
2 2 5 ||
|P10-W=--|P10-U=76(h)|P10-K=01(h)|P10-C=--|P10-V=20|P10-E=30|P10-F=12
|P10-Fdetail=10{4}+2{10}|P10-chi=2|
|P10-vfig=4.4.10|P10-vfigimage=Decagonal prism vf.png
|P10-group=D10h, [10,2], (*10.2.2), order 40|
|P10-rotgroup=D10, [10,2]+, (10.2.2), order 20|
|P10-B=Dip|P10-dual=Decagonal dipyramid|
|P10-special=|P10-schl=t{2,10} or {10}×{}|
|P10-CD=
|P11-name=hendecagonal prism|P11-image=Hendecagonal prism.png|P11-image2=Hendecagonal prism.png|P11-image3=Hendecagonal prism.png|P11-dimage=Hendecagonal dipyramid.png| |P11-Wythoff=2 11 | 2| |P11-W=--|P11-U=76(i)|P11-K=01(i)|P11-C=--|P11-V=22|P11-E=33|P11-F=13 |P11-Fdetail=11{4}+2{11}|P11-chi=2| |P11-vfig=4.4.11|P11-vfigimage=Hendecagonal prism vf.png |P11-group=D11h, [11,2], (*11.2.2), order 44| |P11-rotgroup=D11, [11,2]+, (11.2.2), order 22| |P11-B=?|P11-dual=Hendecagonal dipyramid| |P11-special=|P11-schl=t{2,11} or {11}×{}| |P11-CD=
|P12-name=dodecagonal prism|P12-image=Dodecagonal prism.png|P12-image2=Dodecagonal prism.png|P12-image3=Dodecagonal prism.png|P12-dimage=Dodecagonal dipyramid.png|
|P12-Wythoff=2 12 | 2
2 2 6 ||
|P12-W=--|P12-U=76(j)|P12-K=01(j)|P12-C=--|P12-V=24|P12-E=36|P12-F=14
|P12-Fdetail=12{4}+2{12}|P12-chi=2|
|P12-vfig=4.4.12|P12-vfigimage=Dodecagonal prism vf.png
|P12-group=D12h, [12,2], (*12.2.2), order 48|
|P12-rotgroup=D12, [12,2]+, (12.2.2), order 24|
|P12-B=Twip|P12-dual=Dodecagonal dipyramid|
|P12-special=|P12-schl=t{2,12} or {12}×{}|
|P12-CD=
|AP3-name=triangular antiprism|AP3-image=Octahedron.png|AP3-image2=Octahedron.png|AP3-image3=Octahedron.png|AP3-dimage=Trigonal trapezohedron.png|
|AP3-Wythoff=| 2 2 3|
|AP3-W=--|AP3-U=77(a)|AP3-K=02(a)|AP3-C=--|AP3-V=6|AP3-E=12|AP3-F=8
|AP3-Fdetail=6{3}+2{3}|AP3-chi=2|
|AP3-vfig=3.3.3.3|AP3-vfigimage=Octahedron_vertfig.png
|AP3-group=D3d, [6,2+], (2*3), order 18|
|AP3-rotgroup=D3, [3,2]+, (332), order 9|
|AP3-B=Oct|AP3-dual=Trigonal trapezohedron|
|AP3-special=|AP3-schl=s{2,6}
sr{2,3}|
|AP3-CD=
|AP4-name=square antiprism|AP4-image=Square antiprism.png|AP4-image2=Square antiprism.png|AP4-image3=Square antiprism.png|AP4-dimage=Tetragonal trapezohedron.png|
|AP4-Wythoff=| 2 2 4|
|AP4-W=--|AP4-U=77(b)|AP4-K=02(b)|AP4-C=--|AP4-V=8|AP4-E=16|AP4-F=10
|AP4-Fdetail=8{3}+2{4}|AP4-chi=2|
|AP4-vfig=3.3.3.4|AP4-vfigimage=Square antiprism vertfig.png
|AP4-group=D4d, [2+,8], (2*4), order 16|
|AP4-rotgroup=D4, [4,2]+, (442), order 8|
|AP4-B=Squap|AP4-dual=Tetragonal trapezohedron|
|AP4-special=|AP4-schl=s{2,8}
sr{2,4}|
|AP4-CD=
|AP5-name=pentagonal antiprism|AP5-image=Pentagonal antiprism.png|AP5-image2=Pentagonal antiprism.png|AP5-image3=Pentagonal antiprism.png|AP5-dimage=Pentagonal trapezohedron.png|
|AP5-Wythoff=| 2 2 5|
|AP5-W=--|AP5-U=77(c)|AP5-K=02(c)|AP5-C=--|AP5-V=10|AP5-E=20|AP5-F=12
|AP5-Fdetail=10{3}+2{5}|AP5-chi=2|
|AP5-vfig=3.3.3.5|AP5-vfigimage=Pentagonal antiprism vertfig.png
|AP5-group=D5d, [2+,10], (2*5), order 20|
|AP5-rotgroup=D5, [5,2]+, (522), order 10|
|AP5-B=Pap|AP5-dual=Pentagonal trapezohedron|
|AP5-special=|AP5-schl=s{2,10}
sr{2,5}|
|AP5-CD=
|AP6-name=hexagonal antiprism|AP6-image=Hexagonal antiprism.png|AP6-image2=Hexagonal antiprism.png|AP6-image3=Hexagonal antiprism.png|AP6-dimage=Hexagonal trapezohedron.png|
|AP6-Wythoff=| 2 2 6|
|AP6-W=--|AP6-U=77(d)|AP6-K=02(d)|AP6-C=--|AP6-V=12|AP6-E=24|AP6-F=14
|AP6-Fdetail=12{3}+2{6}|AP6-chi=2|
|AP6-vfig=3.3.3.6|AP6-vfigimage=Hexagonal antiprism vertfig.png
|AP6-group=D6d, [2+,12], (2*6), order 24|
|AP6-rotgroup=D6, [6,2]+, (622), order 12|
|AP6-B=Hap|AP6-dual=Hexagonal trapezohedron|
|AP6-special=|AP6-schl=s{2,12}
sr{2,6}|
|AP6-CD=
|AP7-name=heptagonal antiprism|AP7-image=Antiprism 7.png|AP7-image2=Heptagonal antiprism.png|AP7-image3=Heptagonal antiprism.png|AP7-dimage=Heptagonal trapezohedron.png|
|AP7-Wythoff=| 2 2 7|
|AP7-W=--|AP7-U=77(e)|AP7-K=02(e)|AP7-C=--|AP7-V=14|AP7-E=28|AP7-F=16
|AP7-Fdetail=14{3}+2{7}|AP7-chi=2|
|AP7-vfig=3.3.3.7|AP7-vfigimage=Heptagonal antiprism vertfig.png
|AP7-group=D7d, [2+,14], (2*7), order 28|
|AP7-rotgroup=D7, [7,2]+, (722), order 14|
|AP7-B=Heap|AP7-dual=Heptagonal trapezohedron|
|AP7-special=|AP7-schl=s{2,14}
sr{2,7}|
|AP7-CD=
|AP8-name=octagonal antiprism|AP8-image=Octagonal antiprism.png|AP8-image2=Octagonal antiprism.png|AP8-image3=Octagonal antiprism.png|AP8-dimage=Octagonal trapezohedron.png|
|AP8-Wythoff=| 2 2 8|
|AP8-W=--|AP8-U=77(f)|AP8-K=02(f)|AP8-C=--|AP8-V=16|AP8-E=32|AP8-F=18
|AP8-Fdetail=16{3}+2{8}|AP8-chi=2|
|AP8-vfig=3.3.3.8|AP8-vfigimage=Octagonal antiprism vertfig.png
|AP8-group=D8d, [2+,16], (2*8), order 32|
|AP8-rotgroup=D8, [8,2]+, (822), order 16|
|AP8-B=Oap|AP8-dual=Octagonal trapezohedron|
|AP8-special=|AP8-schl=s{2,16}
sr{2,8}|
|AP8-CD=
|AP9-name=enneagonal antiprism|AP9-image=Enneagonal antiprism.png|AP9-image2=Enneagonal antiprism.png|AP9-image3=Enneagonal antiprism.png|AP9-dimage=Enneagonal trapezohedron.png|
|AP9-Wythoff=| 2 2 9|
|AP9-W=--|AP9-U=77(g)|AP9-K=02(g)|AP9-C=--|AP9-V=18|AP9-E=36|AP9-F=20
|AP9-Fdetail=18{3}+2{9}|AP9-chi=2|
|AP9-vfig=3.3.3.9|AP9-vfigimage=Enneagonal antiprism vertfig.png
|AP9-group=D9d, [2+,18], (2*9), order 36|
|AP9-rotgroup=D9, [9,2]+, (922), order 18|
|AP9-B=Eap|AP9-dual=Enneagonal trapezohedron|
|AP9-special=|AP9-schl=s{2,18}
sr{2,9}|
|AP9-CD=
|AP10-name=decagonal antiprism|AP10-image=Decagonal antiprism.png|AP10-image2=Decagonal antiprism.png|AP10-image3=Decagonal antiprism.png|AP10-dimage=Decagonal trapezohedron.png|
|AP10-Wythoff=| 2 2 10|
|AP10-W=--|AP10-U=77(h)|AP10-K=02(h)|AP10-C=--|AP10-V=20|AP10-E=40|AP10-F=22
|AP10-Fdetail=20{3}+2{10}|AP10-chi=2|
|AP10-vfig=3.3.3.10|AP10-vfigimage=Decagonal antiprism vf.png
|AP10-group=D10d, [2+,20], (2*10), order 40|
|AP10-rotgroup=D10, [10,2]+, (10.2.2), order 20|
|AP10-B=Dap|AP10-dual=Decagonal trapezohedron|
|AP10-special=|AP10-schl=s{2,20}
sr{2,10}|
|AP10-CD=
|AP11-name=hendecagonal antiprism|AP11-image=Hendecagonal antiprism.png|AP11-image2=Hendecagonal antiprism.png|AP11-image3=Hendecagonal antiprism.png|AP11-dimage=Hendecagonal trapezohedron.png|
|AP11-Wythoff=| 2 2 11|
|AP11-W=--|AP11-U=77(i)|AP11-K=02(i)|AP11-C=--|AP11-V=22|AP11-E=44|AP11-F=24
|AP11-Fdetail=22{3}+2{11}|AP11-chi=2|
|AP11-vfig=3.3.3.11|AP11-vfigimage=Hendecagonal antiprism vf.png
|AP11-group=D11d, [2+,22], (2*11), order 44|
|AP11-rotgroup=D11, [11,2]+, (11.2.2), order 22|
|AP11-B=?|AP11-dual=Hendecagonal trapezohedron|
|AP11-special=|AP11-schl=s{2,22}
sr{2,11}|
|AP11-CD=
|AP12-name=dodecagonal antiprism|AP12-image=Dodecagonal antiprism.png|AP12-image2=Dodecagonal antiprism.png|AP12-image3=Dodecagonal antiprism.png|AP12-dimage=Dodecagonal trapezohedron.png|
|AP12-Wythoff=| 2 2 12|
|AP12-W=--|AP12-U=77(j)|AP12-K=02(j)|AP12-C=--|AP12-V=24|AP12-E=48|AP12-F=26
|AP12-Fdetail=24{3}+2{12}|AP12-chi=2|
|AP12-vfig=3.3.3.12|AP12-vfigimage=Dodecagonal antiprism vf.png
|AP12-group=D12d, [2+,24], (2*12), order 48|
|AP12-rotgroup=D12, [12,2]+, (12.2.2), order 24|
|AP12-B=Twap|AP12-dual=Dodecagonal trapezohedron|
|AP12-special=|AP12-schl=s{2,24}
sr{2,12}|
|AP12-CD=
|P5d2-name=pentagrammic prism|P5d2-image=Pentagrammic prism.png|P5d2-image2=Pentagrammic prism.png|P5d2-image3=Pentagrammic prism.png|P5d2-dimage=Pentagrammic dipyramid.png| |P5d2-Wythoff=2 5/2 | 2| |P5d2-W=--|P5d2-U=78(a)|P5d2-K=03(a)|P5d2-C=--|P5d2-V=10|P5d2-E=15|P5d2-F=7 |P5d2-Fdetail=5{4}+2{5/2}|P5d2-chi=2| |P5d2-vfig=4.4.5/2|P5d2-vfigimage=Pentagrammic prism vertfig.png |P5d2-group=D5h, [5,2], (*522), order 20| |P5d2-rotgroup=D5, [5,2]+, (522), order 10| |P5d2-B=Stip|P5d2-dual=Pentagrammic dipyramid| |P5d2-special=|P5d2-schl=t{2,5/2} or {5/2}×{}| |P5d2-CD=
|AP5d2-name=pentagrammic antiprism|AP5d2-image=Pentagrammic antiprism.png|AP5d2-image2=Pentagrammic antiprism.png|AP5d2-image3=Pentagrammic antiprism.png|AP5d2-dimage=Pentagrammic trapezohedron.png| |AP5d2-Wythoff=| 2 2 5/2| |AP5d2-W=--|AP5d2-U=79(a)|AP5d2-K=04(a)|AP5d2-C=--|AP5d2-V=10|AP5d2-E=20|AP5d2-F=12 |AP5d2-Fdetail=10{3}+2{5/2}|AP5d2-chi=2| |AP5d2-vfig=3.3.3.5/2|AP5d2-vfigimage=Pentagrammic antiprism vertfig.png |AP5d2-group=D5h, [5,2], (*552), order 20| |AP5d2-rotgroup=D5, [5,2]+, (55), order 10| |AP5d2-B=Stap|AP5d2-dual=Pentagrammic trapezohedron| |AP5d2-special=|AP5d2-schl=sr{2,5/2}| |AP5d2-CD=
|AP5d3-name=pentagrammic crossed-antiprism|AP5d3-image=Pentagrammic crossed antiprism.png
|AP5d3-image2=Pentagrammic crossed antiprism.png
|AP5d3-image3=Pentagrammic crossed antiprism.png
|AP5d3-dimage=Pentagrammic concave trapezohedron.png|
|AP5d3-Wythoff=| 2 2 5/3|
|AP5d3-W=--|AP5d3-U=80(a)|AP5d3-K=05(a)|AP5d3-C=--|AP5d3-V=10|AP5d3-E=20|AP5d3-F=12
|AP5d3-Fdetail=10{3}+2{5/2}|AP5d3-chi=2|
|AP5d3-vfig=3.3.3.5/3 or 3.3.3.-5/2|AP5d3-vfigimage=Pentagrammic crossed-antiprism vertfig.png
|AP5d3-group=D5h, [5,2], (*522), order 20|
|AP5d3-rotgroup=D5, [5,2]+, (552), order 10
D5d|
|AP5d3-B=Starp|AP5d3-dual=Pentagrammic concave trapezohedron|
|AP5d3-special=|AP5d3-schl=s{2,10/3}
sr{2,5/3}|
|AP5d3-CD=
=
}}
- {{Polyhedra}}
Tables:
- {{Cupolae}}
- {{Polyhedron operators}}
- {{Reg hyperbolic tiling stat table}}
- {{Reg tiling stat table}}
- {{Uniform hyperbolic tiling stat table}}
- {{Uniform tiling full table}}
- {{Uniform tiling list table}}
- {{Uniform tiling stat table}}
Database:
- {{Regular polygon db}}
- {{Prism polyhedra db}}
- {{Reg polyhedra db}}
- {{Semireg dual polyhedra db}}
- {{Semireg polyhedra db}}
- {{Uniform hyperbolic tiles db}}
- {{Uniform polyhedra db}}
- {{Uniform tiles db}}
Info- and navboxes:
- {{Honeycombs}}
- {{Infobox polygon}}
- {{Infobox polyhedron}}
- {{Polyhedron types}}
- {{Tessellation}}
Other:
- {{Coxeter–Dynkin diagram}}
- {{Honeycomb}}