In the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group G, such that every proper subgroup H of G, other than the identity subgroup, is a cyclic group of order a fixed prime number p. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski p-group for every prime p > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem and the von Neumann conjecture.

Definition

edit

Let   be a fixed prime number. An infinite group   is called a Tarski monster group for   if every nontrivial subgroup (i.e. every subgroup other than 1 and G itself) has   elements.

Properties

edit
  •   is necessarily finitely generated. In fact it is generated by every two non-commuting elements.
  •   is simple. If   and   is any subgroup distinct from   the subgroup   would have   elements.
  • The construction of Olshanskii shows in fact that there are continuum-many non-isomorphic Tarski Monster groups for each prime  .
  • Tarski monster groups are examples of non-amenable groups not containing any free subgroups.

References

edit
  • A. Yu. Olshanskii, An infinite group with subgroups of prime orders, Math. USSR Izv. 16 (1981), 279–289; translation of Izvestia Akad. Nauk SSSR Ser. Matem. 44 (1980), 309–321.
  • A. Yu. Olshanskii, Groups of bounded period with subgroups of prime order, Algebra and Logic 21 (1983), 369–418; translation of Algebra i Logika 21 (1982), 553–618.
  • Ol'shanskiĭ, A. Yu. (1991), Geometry of defining relations in groups, Mathematics and its Applications (Soviet Series), vol. 70, Dordrecht: Kluwer Academic Publishers Group, ISBN 978-0-7923-1394-6