Talk:Rice–Shapiro theorem

Latest comment: 7 years ago by Martin Ziegler in topic Saved paragraph from article

Assessment

edit

I'm the page author and I've assessed it as importance=Low (it's a relatively obscure topic, even if it is a relatively important theorem in computability theory. --Blaisorblade (talk) 20:19, 16 July 2008 (UTC)Reply

Stewart Shapiro

edit

There are various Shapiro, and I just guessed it was Stewart Shapiro the one involved with this theorem; there is {{fact}} (i.e. [citation needed]) about this in the page, but I wanted to make the doubt clear. --Blaisorblade (talk) 20:19, 16 July 2008 (UTC)Reply

Duplicate

edit

As far as I could understand, this page explains the Rice's Theorem, which (the other) page is more detailed. Hence, I think this page could be deleted and redirect to Rice's Theorem one. --Guiraldelli (talk) 15:13, 8 September 2015 (UTC)Reply

Saved paragraph from article

edit

I moved the following paragraph from the article here for discussion as it makes no sense: (a) the set   is a set of functions and has no notion of recursively enumerability and (b)   where   is an integer but   denotes a set of functions. Martin Ziegler (talk) 00:11, 3 March 2017 (UTC)Reply

In general, one can obtain the following statement: The set   is recursively enumerable iff the following two conditions hold:

(a)   is recursively enumerable;

(b)   iff   a finite function   such that   extends   where   is the canonical index of  .