Talk:Quantum Monte Carlo

edit

Writing style set off a few alarm bells, so I googled and at least a few sections are verbatim lifts from This PhD thesis. Could be that the PhD's author added it to the article? They went to the trouble of adding the relevant references from the PhD thesis as they copied over. Sockatume 21:27, 13 November 2006 (UTC)Reply

To do

edit

There are several topics specific to QMC that could be useful:

better DMC, including some pictures of the basic algorithm(something like they have in the RMP by Foulkes et al)

discussion of scaling with respect to the error bars(as evidenced by the comments below, it's not that well understood)

the zero-variance theorem

the difference between the mixed and the pure estimators(this goes into DMC, I guess, although it could be separated out)

--Lucaskw 00:15, 2 June 2006 (UTC)Reply

Advantages (section title added)

edit

I have a question for anyone in 'the know.' What is the advantage to evaluating an integral with the Monte Carlo method, as opposed to some other more systematic numerical method? Ed Sanville 03:13, 24 September 2005 (UTC)Reply

Well, it doesn't have an advantage per se, it's just a different approach to integrating. It turns out more efficient in some cases. Especially for precise calculations of electron correlation, but for large systems it's also very costly. Karol 10:00, 24 September 2005 (UTC)Reply

I think MC does have an advantage vs. numerical integration. With numerical integration the calculation becomes quickly unfeasible with system size (for example: consider calculation for a system of 50 atoms in a box of three dimensions. For numerical integration one would need 150 degrees of freedom all discretized, let's say 10 grid points per degree of freedom, so the calculation would need 10 to the 150th power---unfeasible even with modern day computers). The problem is even more severe in the case of quantum systems. Monte Carlo is based on the idea of importance sampling, which means that (roughly speaking) one does not need to integrate over all of configuration space (large parts of it are irrelevant). In Monte Carlo the scaling of the required computational effort with system size is thus much more favorable, usually the second power of the number of degrees of freedom (at least for a pair potential), if the basic algorithm is used, but more favourable scaling can be achieved by various tricks. Galileo fan 11:19, 7 December 2005 (UTC)Reply

I just want to add to Galileo fan's comments.. Scaling in MC is actually not always trivial to figure out, because it not only depends on the time required to complete a MC step(the N^2 that he/she mentioned), but also in how the variance of the quantity you want to measure scales. Interestingly enough, this can lead to scaling better than the time per step. For example, in electronic structure calculations, the variance of the energy usually scales as O(N), and the per-step time is usually O(N^2), resulting in O(N^3) scaling in total. However, if you're interested in an energy per electron, or per cell, you divide your error bars(sqrt of the variance) by N, so the variance actually scales as 1/N, and therefore the calculation is O(N). On the other hand, various things like branching in Diffusion Monte Carlo and difficulty of making moves in general can increase the scaling factor as well. It's not easy to know the scaling when designing an algorithm, and many people have gotten it seriously wrong when making a new algorithm, including missing an exponential scaling.

Article needs attention

edit

This page is desperately asking for more content and less references! Karol 19:52, 29 November 2005 (UTC)Reply

Working on it. I'm a grad student working in the field..may be good practice for those darn paper intros! --Lucaskw 01:26, 12 April 2006 (UTC)Reply


I'll be working on some of this too. I'm also a grad student working in the field. -- jed1978 21:12, 7 June 2006 (-0800)

Relativistic effects

edit

Actually relativistic effects are known for the core electrons of elements from about Sn onwards. The Schrödinger equation does not really describe "all the elements in the world" FelixP (talk) 21:03, 4 November 2008 (UTC)Reply

Scope much too narrow

edit

In my view, the current article has a much too narrow scope. It seems to focus entirely on solving the Schrödinger equation in real space. However, QMC algorithms play important roles also in the context of lattice problems, such as the Hubbard model (for correlated electron systems), the Heisenberg model (for quantum spin systems), the Anderson impurity model (used, e.g., for correlated impurities in metals, but also for solving the Hubbard model approximately within DMFT), and in lattice QCD. Should one extend the current article into these directions or start a new article (e.g., Quantum_Monte_Carlo (lattice) and add a disambiguation page? --Nils Blümer (talk) 12:18, 20 June 2014 (UTC)Reply

Should not be part of "Electronic structure methods"

edit

I believe that this article being part of Electronic structure methods has a much too narrow scope. As it has already pointed out by someone else (Nils Blümer) there are different flavors of Quantum Monte Carlo methods which are concerned with lattice problems and many-body problems which are not at all in the field of electronic structure. For example, interacting Bose-Einstein condensates or Quantum Monte Carlo for nuclear matter.

The general context of Quantum Monte Carlo should be that of computational approaches to the quantum many-body problem. This has already been partially done in the page many-body problem but I guess we could do better and refactor the Quantum Monte Carlo page in view of this more general framework. Erostrato (talk) 22:30, 25 December 2014 (UTC)Reply