This level-5 vital article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
This article links to one or more target anchors that no longer exist.
Please help fix the broken anchors. You can remove this template after fixing the problems. | Reporting errors |
Origins
editThe bulk of this article began as a contribution by myself to Citizendium: Vacuum (quantum electrodynamic). On WP the article QCD vacuum exists, and QED vacuum is at least as important a topic from the standpoint of the phenomena described under quantum electrodynamics. There are a number of aspects of QED vacuum scattered throughout WP, and an attempt has been made to link to them in a coherent fashion for a reader interested in QED vacuum itself. Brews ohare (talk) 16:03, 8 January 2012 (UTC)
Effects in strong magnetic fields
editIn strong fields, you get more spectacular effects, many of them are described in this article. E.g., the stability of the vacuum sets a limit on the maximum possible strength of a (static) magnetic field. If the magnetic field would become too strong, it will lead to monopoles being created, which will then weaken the magnetic field. Count Iblis (talk) 23:54, 13 January 2012 (UTC)
Virtual Particles - question
editAny idea if ΔEΔt ≥ ½ħ would be better if we replaced ΔE with the General Relativistic conserved quantity (energy.mass.momentum.stress) and replaced Δt with Δ(x,y,z,t) ?? (time dependent AND relativistic) My understanding is that ΔEΔt ≥ ½ħ is not directly applicable to vacuum fluctuations, so its invocation in that context is incorrect, rather than just debatable?72.172.11.140 (talk) 00:03, 3 February 2014 (UTC)
A compact and comprehensive article!
editI'm not an expert on the subject, but as an interested layman I think the article links a couple of QFT-ideas in a very nice way. My thanks to the writer. P.S. I know this is a subjective opinion. — Preceding unsigned comment added by Koitus~nlwiki (talk • contribs) 20:24, 5 March 2020 (UTC)
Energy Time Relation
editWhoever wrote that time amd energy do not satisfy commutation relations has no business editing physics topics. Energy and time are more fundamental in HUP than say position and momentum. A simple thought would.conclude that [H,t] = i ĥ, and that's the end of that discussion. 2kQbitz (talk) 19:54, 25 January 2023 (UTC)