Talk:Hodge star operator

Latest comment: 3 years ago by 2601:200:C000:1A0:F1D0:4B34:8877:BEE3 in topic Why the parameter "s" ???

Which Grad?

edit

In the Hodge dual article, the following statement appears:

"The combination of * and the exterior derivative d generates the classical operators div, grad and curl, in three dimensions."

Grad is linked, but it points to a disambig page.

Which of the following two possible definitions of "grad" is the correct one to use?

Help in figuring out where to point this link would be appreciated. Kevyn 13:58, 29 Jun 2004 (UTC)

It's the first of those. Thinking about it, the * operator is not really involved in defining grad. Charles Matthews 14:19, 29 Jun 2004 (UTC)

No, grad a is just da. You need to combine d and * if you want to do any more interesting things with d because d^2=0. Francis Davey 07:53, 11 Aug 2004 (UTC)

This is not correct. The gradient of a scalar field f is obtained by forming the 1-form df (which is a section of the cotangent bundle) and then using duality (Riemannian metric!) to obtain the associated vector field v = grad f. This is a subtle but important point. ASlateff 128.131.37.74 05:47, 11 February 2007 (UTC)Reply

Definition of *

edit

Alternative approach?

edit

I have done some reading and found some much more direct and appealing (to me) definitions of duality operators, one of which I believe is the operator we are calling the hodge star here. I suspect that both should be mentioned. I have this treatment from Schutz's book on mathematical methods for theoretical physics.

First one relies on the existence of a volume form (not a vector -- and I think we should be careful to distinguish them at this stage). Suppose we have   as a volume form, then the dual of v is   in the obvious sense. This provides a map from p-vectors to (n-p) forms. If we have a volume n-vector as well (which may be needed as well?) this dual is really easy to understand since it can be visualised directly.

As a result of the above insight, I was able to immediately understand Maxwell's equations in 3D exterior algebra form. Cool. I am afraid it knocks the inner produce definition below into a cocked hat.

"cocked hat"? is that some kind of English slang? I'm not sure what it means. I assume something like "makes it irrelevant"? But it's not irrelevant. They are just two different ways of writing the same thing. -Lethe | Talk

Second, by using an inner product G:V->(V->F) we can then make a map from p-vectors to (n-p) vectors like this:  .

Hmm... So actually, you don't really need to use a volume form, you just want to use the volume element of the exterior algebra of the dual of our vector space? If this is all you need it for, then my comments above whining about not doing differential topology too early are not relevant.
We were talking at cross purposes. In the books I have read a form is a member of the exterior algebra of the dual of a vector space. Given any vector space I can form (1) an exterior algebra of vectors and (2) an exterior algebra of forms. If I chose the vector space to be in the tangent space of a differentiable manifold, then the forms will be differential forms, but vector spaces can arise in other ways. In particular I may not need a differential structure to impose them on a manifold. Indeed I may not need the machinery of manifolds to study whatever vectors I want.
OK, so in my mind the word "form" is short-hand for "differential form", so everytime you say "form", i thought you were trying to sneak in some differential stuff. But it's just a matter of terminology, and perhaps I'm confused about which usage is standard. I will check some textbooks on monday. So anyway, forget all my complaints above. You seem to be on the right track then. I am going to delete that list above, since it is irrelevant and distracting from the thread of this discussion. -Lethe | Talk
So I do mean a volume form, that is an object which maps an n-vector to a scalar. The definition I gave above has two advantages (1) its basis independent; (2) it is a closed form definition of the dual, rather than defining a dual as the unique object which satisfies an equation. I think that is a very satisfying way of defining a mathematical operation.
OK, so you are comparing the following two definitions:
 
and
 
and you feel the second one is easier... Let me think about that for a bit. I find both definitions pretty cumbersome, so while I agree with your complaints about the definition I gave, I don't really like your definition so much either. For one thing, while yours ends up with a more straightforward expression, it gets there in a more roundabout way, relying on the construction of two exterior algebras, one on the vector space and one of the dual space. I see that as not so expedient. But let's see what others think as well. And I wouldn't object to having more than one definition (or more than two, since we already have two). -Lethe | Talk


I also suspect that the p-vector (n-p)-form equivalence is "more natural" than the p-vector (n-p)-vector equivalence, which requires a metric tensor, but I cannot quite see if that is right.
I can't see anyway that the Hodge dual would be more natural on the dual exterior algebra. To be sure, you need the metric and the orientation in both cases. -Lethe | Talk
Also, my understanding was that * required that a space be oriented, i.e. that there are two *'s, and the choice of orientation selects one (I guess that might come from your defintion of determinant). Francis Davey 19:33, 14 Aug 2004 (UTC)
I have never heard anyone say that there are two * maps, although I suppose in a sense, that is true, because there are two possible orientations for the vector space. But you might just as well say that because there are infinitely many possible inner products on the vector space, there are infinitely many possible Hodge dual maps. It's true, but not very useful, I think. In practice, the inner product and the orientation are usually given to you beforehand, leaving you with a single Hodge dual map. -Lethe | Talk

Also easy to visualise (although inner products are harder to visualise in exterior algebra, but that's hardly surprising because they require some more geometry). -

Can we try approaching the Hodge dual in this way? Start with an abstract definition if you like (which will help the mathematicians of this world who can't bear to understand anything (Hey!! I resent that!) but need only a formal definition and all else will follow -- scary people). Then some motivation using a volume element, plus possible some pictures, followed by some more alternative derivitions (perhaps a basis dependent one as well).

Apologies for the above. I am stuggling to understand things from textbooks which combine two irritating features I have found with mathematics textbooks: (1) far too little chat or expansion for me to gain any kind of intutition as to what is being said -- i.e. of the definition/theorem/proof kind; and (2) not enough rigour for me to have a clue what is being said. I am trying to understand a remark at the moment which talks about the closure of a set of lie brackets, but never tells me what that means. I have had particular difficulty with the hodge star, many definitions being like this article, leaving just enough unsaid for me not to be sure what the definition actually is, but not enough for me to really understand it. I am getting there, but think that something really clear could be written here.
I don't know how you're currently doing with the Lie bracket stuff, but I can think of a really simple explanation of what that remark probably means, so let me give it to you, and perhaps you will find it useful. One Lie algebra that we all know and love is sl(n), the set of nxn traceless matrices. One can easily check that the product of two traceless matrices need not be traceless. However, the Lie bracket (commutator) of two traceless matrices is necessarily traceless (by the cyclicity of trace), thus one says that the Lie bracket closes on the set of traceless matrices. Of course, under more general definitions, axioms of closure become sort of trivial in a sense... -Lethe | Talk

Actually, I am surprised there isn't a page that motivates exterior algebra in the same way. Once one understands it (and I think I now do) one can immediately "see" all of electromagnetism. Francis Davey 23:29, 13 Aug 2004 (UTC)

certainly there is a lot of work do be done around here -Lethe | Talk
So I guess my point is, this article should not be meant as a fastest approach to understanding electromagnetism (that would belong in electromagnetism), but rather a complete and general definition and description of the purely mathematical topic that is the Hodge dual. Certainly the article needs some examples, though, and in an examples section, it would be nice to explain how this applies to electromagnetism. -Lethe | Talk 19:01, Aug 14, 2004 (UTC)
Agreed. I think most of the discussion is how to structure the definition and explanation section. Examples are probably much easier and the reader can be pointed elsewhere for some of them. Francis Davey 19:33, 14 Aug 2004 (UTC)
This article would benefit greatly from some examples, I think. -Lethe | Talk

Clarifying existing definitions

edit

I wondered if someone more mathematical than me could give me a better geometric understanding of *. Can it be defined without reference to an (orthonormal basis)?

Yes. and in fact you find this definition in the article:
 
you can prove that such a *α exists for each α and is unique. Note that there is no choice of basis and no reference to components in this definition. On the other hand, I think it is harder to see what the Hodge star actually does with this equation. -Lethe | Talk
That's not enough! Indeed this whole article is tantalising and frustrating because it leaves so much unsaid (see later). In this case, I don't know what <,> means when applied to elements of the exterior algebra. The article just says the inner product induced on the exterior algebra, is there such a one, is it unique, what is it? Its not in the article on exterior algebra as far as I can see. Sorry to complain, but I have spent all day trying to puzzle this out. Francis Davey 17:27, 11 Aug 2004 (UTC)
Indeed, you are correct. Without saying what the induced inner product is, this definition has no meaning. That needs to be added to some article (exterior algebra, i suppose). Let me give the definition here, and if you like, we'll put it in the appropriate place:
 


Well at first I thought this might help, but I am afraid its just given me more to puzzle about. I am not sure what you mean by  . For example, I understood your equation to mean:
 
This is not what I meant with that equation (nor do I see any meaningful way to interpret this equation (what is the determinant of an ordered list of vectors?), but anyway).
but that can't be right because that would mean  
The inner product is only defined between k-vectors and k-vectors, in other words, the formula above doesn't work between a 2-vector and a 1-vector, as you are trying to do. This results in attempting to take the determinant of a 2x1 matrix (illegal operation). Although I suppose it might make sense (and perhaps people do) define all k-vectors to be orthogonal to all j-vectors, for k≠j.
In other words your definition simply pushes the mystery somewhere else. I will ponder on what you have said. Francis Davey 17:35, 12 Aug 2004 (UTC)
Let's make the explain the notation of my definition, and then see an example, shall we?
so
 
means the determinant of a matrix with
 
in the ith column and jth row (or maybe I mean jth column, ith row)
therefore
 
that last is a pain in the arse to write, which explains the much shorter, if harder to recognize, shorthand that I used above. Notice that the entries of the matrix are the inner product of 1-vectors. This is how the induced inner product of the exterior algebra is built out of the inner product of the underlying vector space (member of which I call 1-vectors, when considered as being included in the exterior algebra). This inner product was given to us, and we have built an inner product for the whole algebra out of it. Now for an example. Assume e1, ..., en to be orthonormal (i.e. ⟨ei,ej⟩=δij)
 
and
 
which demonstrates the point that I mentioned above that the way we interpret this definition is that it is the inner product that takes the orthonormal basis {ei} and basically promotes the corresponding basis of the entire exterior algebra to be orthonormal. In other words, if {e1,e2,e3} is an orthonormal basis of 1-vectors, then {e1e2,e2e3,e3e1} is an orthonormal basis for the 2-vectors. I believe Charles says the exact same thing below. OK, so if you followed this stuff about determinants, then look again at what I said about the inner product of k-vectors and how the properties of the determinant match up with the properties of the wedge product, etc. (currently that's in the paragraph directly below this one) - Lethe | Talk
This is the only possible definition one can make that reduces to the given inner product on 1-vectors, that respects the antisymmetry of the wedge product (due to the antisymmetry of the determinant under exchange of columns), that respects the symmetry of the inner product (due to the invariance under transposition of the determinant), and has the nice property that multivectors made of orthonormal vectors are orthonormal. It is defined without respect to any basis. It extends to p-vectors which are not a series of 1-vectors wedged together by linearity. With this definition in available, at least all the pieces should be in place to begin trying to understand the definition of the Hodge dual. Also note that this sentence from the article: "the all wedge products of elements of orthonormal basis in V form an orthonormal basis of exterior algebra" is another attempt to define the inner product on the exterior algebra, though this definition is incomplete and basis dependent. Use the definition I give above instead, until we can fix the basis dependent definition. -Lethe | Talk

Suppose I have a metric G:V -> V -> F

surely you mean g:V⊗V -> F?-Lethe | Talk
sorry, I find it clearer to use curried functions, they are equivalent. Francis Davey 17:27, 11 Aug 2004 (UTC)
Can you explain what you mean? I don't know what a "curried function" is, and i can't quite understand how what you wrote can be equivalent to what i wrote. -Lethe | Talk
I am sorry, its my computer science background. In a lot of algebras there is an isomorphism between A⊗B -> C and A -> (B -> C). This is essentially what Cartesian Closed Categories are all about. If you think about it, using my definition G u is a member of V -> F, in other words a 1-form. You can see that (G u) v would be the same as g(u,v) in your definition. I remember a lot of my fellow students in maths having problems with dual vector spaces, but this intuition makes it easier.
If you are happy with functions being first class objects (which computer scientists are) you don't always have to tuple things up first. Francis Davey 19:49, 11 Aug 2004 (UTC)
Ahh.. OK, I am with you. Without the parentheses, I didn't really understand what you meant (to me that looks like a sequence of maps, not a map from a space to a space of maps). That and the use of the unfamiliar term "curried" threw me off, but now I see. Mathematicians do similar constructions in category theory all the time, like to give examples of spaces that are canonically isomorphic. OK, so I agree that the inner product can be thought of as a map V -> (V -> F). Cool, I'm happy with that (although I have very little CS, and don't know what "first class objects" are, but nevermind). By the way, you are using the word metric here where I would use the word inner product. Lots of people consider them interchangeable (especially physicists). Do you use them interchangeably? -Lethe | Talk
Surely an inner product will define you a metric tensor and vice versa? Or have I missed something? Francis Davey 19:33, 14 Aug 2004 (UTC)

(where F is the underlying field and V a vector space over F), what is * defined as?

*:Ωk(M) -> Ωn-k(M)-Lethe | Talk
Hmmmm, that tells me what the domain and codomain are, but its not quite a definition. Francis Davey 17:27, 11 Aug 2004 (UTC)
No, of course it is just specifying the domain and codomain. the definition is supplied above.-Lethe | Talk

One of the nice things about exterior calculus, as far as I understand it, is that one can go quite a long way in understanding certain equations without having to use components, which I find more satisfying. Can I do the same with *?

Francis Davey 07:53, 11 Aug 2004 (UTC)


The alternative definition of the hodge star using basis vectors is hopeless (and incorrect) since it doesn't state that the hodge star is a linear map, which wasn't something that was clear to me at all. Only if its linear can the definition be adequate.

Let's not say incorrect, but rather just incomplete (incompleteness is admittedly a form of incorrectness, but a weaker one than is implied by the unqualified use of the word incorrect)-Lethe | Talk

The article opens with something that might help a reader to "intuit" what the hodge star is all about. But it suffers from several problems: (1) the alphas are vectors but the omega is a form, so the equation cannot be right;

A differential form is a member of the exterior algebra of the vector space of cotangent vectors, right? well you can make an exterior algebra over any vector space. In this article, which vector space we're talking about is left unspecified, since the Hodge dual can be defined on any exterior algebra with inner product. With me so far? so don't think of that first equation as one with forms and vectors. that equation has a p-vector wedged with an (n-p)-vector on the left-hand side (together they make an n-vector), and the volume element (which is an n-vector) on the right-hand side. So the equation works out just as it should.-Lethe | Talk

2. because the hodge star is linear, if you double a vector, you double its star, thus quadrupling the volume of the wedge product of the two. The obvious understanding of the first equation is of something which is not linear, so that doubling a vector, halves its dual.


I'm not sure what you mean by "doubling a vector". do you mean wedging a 1-vector with itself? this will always get you zero...-Lethe | Talk
I meant multiplying by a scalar of value 2. That is *(2a)=2*a
Ahh... I see. So I'm not sure off-hand, but I think that first equation is only meant to apply to orthonormal vectors. So you can't go doubling things and still expect it to apply. But make no mistake, the Hodge star is indeed a linear operator. And the defining equation will apply to any vectors, so you may double to your heart's content. -Lethe | Talk


I am not sure I understand what a standard basis is either, but the whole first part of this article is so muddled that it makes no difference.

I suppose standard basis means "orthonormal basis", though it would be nice if we made that explicit.-Lethe | Talk

HELP! I want to understand what this is, but at the moment I have no complete definition. Francis Davey 17:27, 11 Aug 2004 (UTC)

Well, I have thought for some time that this article needs to be rewritten a bit. Maybe we can work out some better explanations on this talk page, which will lead to a clearer article. So if you have more questions, please be my guest!! -Lethe | Talk

Yes, my attempt to provide an introductory idea doesn't seem to have worked out, at least without more detail. For a standard orthonormal basis, * of a wedge of a subset of the basis is the wedge of the complementary subset, up to sign. Eg for dimension 3, you exchange the wedge of e1 and e2 with e3, and so on by cyclic permutation. That's what one is trying to generalise, really. Charles Matthews 09:53, 12 Aug 2004 (UTC)

That is quite helpful. The problem is that a lot of books give definitions like ones on this page, which aren't quite complete. I didn't know * was supposed to be linear, and the intuition that I got was that given a volume element u, *v is given by  , the dual isn't unique from that definition because   also holds (why is that not a problem with your definition, or are you only saying that * operates on basis vectors in the way described). More seriously the "larger" a vector, the "smaller" the dual. However it has a nice geometric intuition attached. Francis Davey 17:35, 12 Aug 2004 (UTC)

Firstly, you may have missed it, but the linearity of the Hodge star operator is mentioned in the first sentence. Secondly, as I said above, I think that first equation is only meant to apply to orthonormal vectors, so you can't do this construction that leads to the ambiguity here. While the first equation is a quick way to calculate a Hodge dual, it is not a satisfactory definition, for the reasons you point out. -Lethe | Talk

Hodge dual of an arbitrary tensor

edit

the new texts reads that it is possible to take the Hodge dual of an arbitrary tensor, not just an antisymmetric one. Is that true? It's news to me! -Lethe | Talk 18:27, Apr 29, 2005 (UTC)

The tensor formula (summation with a fully anti-symmetric tensor) automatically discards any part of the tensor that is not fully antisymmetric, but I don't think that this should be regarded as taking the Hodge dual, which should IMO only be defined on a k-form or k-vector. I think it should be rephrased to make this clear. —Quondum 06:38, 25 January 2016 (UTC)Reply
I modified the relevant statement so that it does not imply that the tensor formula for the Hodge dual is actually taking the Hodge dual when applied to an arbitrary tensor. —Quondum 05:00, 27 January 2016 (UTC)Reply

Hodge dual generalizes the cross product

edit

I don't agree with the assertion that the Hodge dual generalizes the cross product in three dimensions. I previously removed that assertion from the article here with edit summary "the Hodge dual does not generalize the cross product to higher dimensions, although it is part of the def in 3 dimensions; rewrite introduction (this intro is redundant".

Here are some differences between the vector cross product and the Hodge dual:

  1. The vector cross product is a binary operation while the Hodge dual is unary (it's not even a vector product).
  2. The vector cross product is closed on the underlying vector space while the Hodge dual is not.

The only relationship between the Hodge dual and the vector cross product is that the Hodge dual applied to the exterior product gives you the vector cross product, in the three dimensional case. One might make the argument that the exterior product (or the Lie bracket) generalize the vector cross product, but it would be very hard to make that case for the Hodge dual. In any event, it isn't the motivation behind the definition, and therefore does not deserve to be the first sentence.

I am removing the sentence again. -Lethe | Talk 03:00, August 10, 2005 (UTC)

The goal of that sentence was to provide a simple, informal introductory comment that allowed a typical college sophomore to grasp the general idea. Technically, you are right; its not a binary op, etc. but pseudovectors do show up all over the place in college physics, and thus I felt the article should include some simple touchstone. How about The Hodge star is commonly used to define the cross product of two vectors in three dimensions. Would that work? linas 00:06, 16 August 2005 (UTC)Reply
Except that the hodge dual is not commonly used for the vector cross product at all. Most books that deal with the subject simply define the vector cross product by means of its components. A less geometric definition, but surely you can't argue that the hodge dual definition is common. So I still can't get on board having that sentence in the first paragraph. As far as something to indicate the fact that the Hodge dual depends on the orientation, and how it changes vectors in a vector rep to vectors in a pseudovector rep, I agree, that's worth mentioning. The corollary that the vector cross product of two vectors is a pseudovector should follow, sure. -Lethe | Talk 01:00, August 16, 2005 (UTC)
Right. And so the article on the cross product does not begin by stating that its the "Hodge dual of the exterior product". What I like to see, in any math that I read, are those sentences that make my brain go "ah ha!" and light up that lightbulb, as soon as possible. I like to see the ah-ha-inducing language early, even if this means that its somewhat inaccurate or poorly defined; the correct, detailed definition can be supplied once the reader is hooked. Anyone who is interested in the Hodge dual and wants to read about it will already know all about the vagaries of the cross product, and so here, the "ah ha" moment comes with the realization "its like this other thing that I've seen before". linas 00:42, 17 August 2005 (UTC)Reply

underpinning de Rham

edit

furthermore, in what sense does the Hodge decomposition "underpin" de Rham cohomology? The most we can say is that the Hodge decomposition provides us with a privileged representative of the cohomology class, namely, the harmonic form. This of course depends on the choice of metric, while the cohomology groups are topological invariants, so it is a stretch to say that it is an underpinning. -Lethe | Talk 03:09, August 10, 2005 (UTC)

It was just casual, informal, language so that I could wikilink to the article that covers cohomology. It was meant only to be a more literate way of saying "see also cohomology", nothing more. linas 00:06, 16 August 2005 (UTC)Reply
I guess it would be nice to have a link to de Rham cohomology. Note that pure de Rham cohomology itself is a topological invariant, and doesn't depend on a Hodge dual, so this isn't relevant there, strictly speaking. I guess what we could do is say something like ..., which in the case of compact Riemannian manifolds leads to the Hodge decomposition of differential forms, which uses concepts from de Rham cohomology. But it's still weirdly nebulous, and without an explicit explanation, adds nothing to the article. Maybe just a "See also" link at the bottom would be better. And I guess we should write the Hodge decomposition article, it will all be explained in there. -Lethe | Talk 01:20, August 16, 2005 (UTC)
"See also" works for me. I thought I'd added a short section on Hodge decomposition to some article, but I can't remember where now, and appearently didn't create a re-direct page. Oh ... I added it to, well, lookee there ... Mind if I just #redirect until someone splits it out into a full-fledged article? linas 00:42, 17 August 2005 (UTC)Reply

Yet another definiton

edit

Exterior algebra is a subalgebra for Geometric algebra. In GA the closest thin to hodge is a pseudoscalar I

 

in GA geometric product is defined

 

so

 

Exterior algebra is ancommutative so the dot product term is zero.

Inverse of k-vector A is

 

So Hodge is a pseudoscalar Q.E.D.

eg.

 

 

--213.169.2.205 18:03, 14 November 2005 (UTC) apsReply

signature and Hodge squared

edit

I once added the equation

 

to this article. At some point in its history, someone (I'm looking at you here, linas) changed it to

 

I've fixed the error, but I notice that a similar weirdness is in the equation

 

for the codifferential. I haven't fixed it, since I don't know the correct convention off the top of my head. Furthermore, I'm wondering if the fact that the same weirdness appears twice means that perhaps it's not simply a mistake, perhaps someone thinks that signature does more than flip the sign. Does anyone want to stand up for this equation? -lethe talk + 17:41, 8 April 2006 (UTC)Reply

The signature of the codifferential operator

edit

I believe that the correct version of the   is given by, when acts on   forms,

 

Especially, with this convention, the Lapalacian operator on 1-form has the correct expression 1[1], see the Lemma 27 of Chapter 7 in 2[2].

[1]

[2]

  1. ^ a b Donaldson, Simon. "Lecture Notes for TCC Course "Geometric Analysis"" (PDF). wwwf.imperial.ac.uk. Retrieved 29 December 2018.
  2. ^ a b Petersen, Peter (2016). Riemannian geometry (Thirdition ed.). Springer International Publishing. p. XVIII+499. ISBN 978-3-319-26652-7. Retrieved 29 December 2018.

--Vanabel (talk) 14:25, 29 December 2018 (UTC)Reply

pseudo riemannian case

edit

Can someone file a reference for the pseudo riemannian case?

codifferential is adjoint of d

edit

I would like to point out a correction which should be made to the section proving that the codifferential is the adjoint of d. It is true that it is the adjoint, but the proof offered is not correct. The article currently states that we can get the required identity from integrating d of the volume form since that is zero. But to integrate forms, the degree of the form integrated must match the dimension of the manifold over which integration takes place, and integrating d of the volume form would violate this. In fact, the proof uses Stokes' Theorem (see for example p. 318ff of Differential Forms in Mathematical Physics, C. von Westenholz, for the details of the proof). Thank you. Idempotent 09:27, 13 September 2007 (UTC)Reply

I corrected the presentation a bit. However, I think that the specific relation between d and δ is motivated by the desire to have adjoint operators and this is not a miraculous consequence of the definition given at the start of this section. Therefore, I think that the order of the presentation should also be changed. Bas Michielsen (talk) 16:33, 26 August 2009 (UTC)Reply

Tensor notation

edit

I fear that the expression given in the 'Tensor notation for the star operator' section is incorrect. I noticed that while I was trying to prove that it is covariant under coordinate transformations, but I think the easiest way to see there is something wrong is to note what happens if η is a 0-form. In this case, there are no indices on it, and we just get *η = ε, which can only be a well-defined tensor equation if the right-hand-side is also a tensor, i.e., ε should mean the Levi-Civita tensor (the volume form), not the symbol (which is a tensor density).

I would go ahead and make the change, but I just wanted to make sure I'm not missing anything here.

Edit: I guess I did go on and changed the article since I don't know if anybody is ever going to read this talk page.

Legendre17 (talk) 18:55, 4 August 2008 (UTC)Reply

Sorry, I was going to reply. Your edit looks reasonable to me. Something more can obviously be said about how the star operator is generally density-valued in the absence of a metric. siℓℓy rabbit (talk) 19:00, 4 August 2008 (UTC)Reply

Inner product of k-vectors

edit

The paragraph on the inner product of k-vectors contained a reference to volume forms which I think should not be here. I edited the paragraph such that there is a clearer separation between the general k-vector case and the specific application to exterior differential forms on manifolds. However, I think that this should not appear here at all. Bas Michielsen (talk) 12:18, 28 August 2009 (UTC)Reply

In fact there are a few more issues with this page in its actual state. The most important one, I think, is that there is a mix between the general definitions in terms of k-vectors and the special case of exterior differential forms. I would prefer to group everything related to the special case into a dedicated section somewhat like "Hodge duality on manifolds." The present mixing up is most disturbing when there are references to "the metric". In the general case, this should be the metric of the underlying vector space V introduced at the start. But in the the context of exterior differential forms on manifolds, the g used is apparently the metric on the tangent bundle and not the one on the k-forms in the cotangent space, of which the coefficient matrix is the inverse of the one conventionally used.

A less important issue, perhaps, is the use of the name "dual." I think it would be much clearer if dual would only be used when there is actually a metric pairing between two spaces. I think that the whole idea of the Hodge dual is motivated by this idea. The fact that there is an isomorphism between spaces of complementary dimensions does not justify the name dual in itself. Bas Michielsen (talk) 09:18, 31 August 2009 (UTC)Reply

Formal definition of the Hodge star of k-vectors

edit

In the equation for the formal definition, it does not seem clear what happens in the case k=0 - LHS seems ill-defined - or the case k=n - RHS seems ill-defined.

As I understand it 'wedge-ing' together all of the vectors of the orthonormal basis gives a unit volume, so I guess the answer should be 1 for those cases, but the definition doesn't seem to say that.

Albear-And (talk) 17:17, 12 February 2010 (UTC)Reply

It's not especially clear, but the exterior product of zero vectors is usually taken to be a scalar. In this case with unit vectors the value should be 1. See e.g. Exterior algebra#Basis and dimension, where Λ0(V) is the space of exterior products of zero vectors.--JohnBlackburnewordsdeeds 17:53, 12 February 2010 (UTC)Reply

Sign incompatibility

edit

It seems that in the section on the codifferential on manifolds, the article uses the positive Laplacian (in the sense of functional analysis) while in the very last section, the opposite sign convention is used for Δ. This is likely to confuse people. Should the two different uses be left in, with a note to warn people, or should one of them be changed? They are both natural in their two separate contexts, so I would vote for the former. Maybe use \nabla^2 for the three-dimensional one, and note that it is the negative of the general Laplacian. -- Spireguy (talk) 02:43, 8 June 2010 (UTC)Reply

Apparent conflict between definitions in "Computation of the Hodge star" and "Examples"

edit

I may be wrong, but I wanted to point out what I believe is a sign error in the 'Examples' section, in the subsection 'Four dimensions', I believe the wrong sign has been applied to all the examples of 2-forms given. Consider the first one first instance:

 . But the earlier definition

 

where   is an even permutation of  ,

implies that

 .

Also, the expressions under 'Four dimensions' contradict the assertion in the section 'Duality' that

 ,

for if   and  , then this becomes  ; but

  and  

implies

 .

Look at http://www.dr-gert-hillebrandt.de/mathe_uni.htm http://www.dr-gert-hillebrandt.de/pdf/Universitaet/Mathe/Der%20Stern-Operator.pdf — Preceding unsigned comment added by 77.8.136.118 (talk) 11:16, 26 March 2015 (UTC)Reply

Clarification? Thanks - Erik, 00.55 UTC 8th April 2012 — Preceding unsigned comment added by 93.96.22.178 (talk) 00:54, 8 April 2012 (UTC)Reply

I have not gone through this in detail (and do not know whether there are errors in the article), so here I am only going to highlight a confounding factor: that the signature of the metric affects the sign of the Hodge dual. With the identity
 
an orthonormal basis is assumed, which presumably implies that the metric is positive-definite and that s=+1. It is unfortunate that the section Computation of the Hodge star does not deal properly with the sign as as this identity is what many would want to use, and the limitation on its applicability is not highlighted.
The example Four dimensions, on the other hand, deals with a Minkowski metric (where s=−1), which is not positive-definite (and does not admit an "orthonomal basis"). This may explain the discrepancy.
I would like to see this made clearer in the article; it is difficult to interpret it as a straightforward reference in this respect. — Quondum 06:51, 8 April 2012 (UTC)Reply

Explanation Section

edit

Regarding my recent addition: I've posted a message on the Maths WikiProject talk page asking for feedback. Fly by Night (talk) 18:37, 1 July 2012 (UTC)Reply


"Let W be a vector space, with an inner product \langle\cdot, \cdot\rangle_W. For every linear function f \in W^* there exists a unique vector v in W such that f(w) = \langle w, v \rangle_W for all w in W. The map W^* \to W given by f \mapsto v is an isomorphism. This holds for all vector spaces, and can be used to explain the Hodge dual."

Consider the vector space V over Q consisting of all finite sequences of rational numbers. With the inner product given by summation over the multiplication of corresponding pairs, and point-wise addition and scalar multiplication. This is a countable set. V* consists of the set of all finite and infinite sequences of rational numbers. This set is uncountable. According to this section, the two spaces are isomorphic. Clearly this does not hold for all spaces.

Also note: it is claimed to hold for all vector spaces, which is necessarily false, since W must be an inner product space. — Preceding unsigned comment added by 149.89.17.110 (talk) 18:16, 12 September 2013 (UTC)Reply

Revised formal definition

edit

I have revised the section Formal definition of the Hodge star of k-vectors, since it was incomplete and had a few problems. I found the Tevian Dray reference particularly suited for drawing on for this article, and would encourage others to use it. I have removed the need for any reference to a basis in the definition of ω, drawn attention to that a choice of orientation must be made and importantly have removed reliance on another article for the crucial definition of the "inner product" (better named a bilinear form throughout?) as extended to k-vectors. I haven't indicated that s=⟨ω,ω⟩=±1 is determined by the signature of the bilinear form. I invite others to review and edit for correctness/clarity etc. My intention was to achieve an understandable and complete definition, but others may feel that I've not achieved this and I'd value their input. — Quondum 13:57, 4 July 2012 (UTC)Reply

"introduced in general by" in lead?

edit

I am confused by the phrase "introduced in general by" in the lead. I am unsure of what was intended and do not know the actual history, and am thus hesitant to simply remove the words "in general". Anyone know what's best here? — Quondum 19:12, 15 July 2012 (UTC)Reply

My guess would be that special cases of it were used by others before Hodge developed the general definition. JRSpriggs (talk) 05:09, 16 July 2012 (UTC)Reply

Explanation Section

edit

The explanation section is a nice attempt at getting a coordinate free construction of the Hodge star operator, but it is not immediately clear why the formula in the explanation section gives the desired formula in the formal definition section.

Jfdavis (talk) 19:18, 26 September 2012 (UTC)Reply

Generality of "symmetric bilinear form"

edit

I have been editing this article for consistency on the assumption that what is meant by "inner product"   is a general symmetric bilinear form, but some of the wording suggests to me that in some contexts a symmetric sesquilinear form (i.e. a Hermitian form) is used. This would suggest that two distinct types generalization of "inner product" are used in the definition of the Hodge dual according to context:

  • a general metric tensor (symmetric bilinear form)
  • a hermitian form (symmetric sesquilinear form).

Can someone confirm whether both of these generalizations are normally understood to be permitted in the definition of the Hodge dual? It will not be too difficult to include both cases in the definition. — Quondum 17:11, 14 October 2012 (UTC)Reply

A mapping "from.....and...."?

edit

Shouldn't the sentence "the Hodge star operator establishes a one-to-one mapping from the space of k-vectors and the space of (n−k)-vectors." instead say "between the space of k-vectors and the space of (n−k)-vectors" or "from the space of k-vectors to the space of (n−k)-vectors." ?

Tashiro (talk) 07:54, 25 February 2014 (UTC)Reply

You are right, mappings are directed and relations are not. The text was a mix-up of the two. I made the correction. Bas Michielsen (talk) 08:46, 25 February 2014 (UTC)Reply
edit

Inclusion of the following ideas would be clarifying (from Vaz; da Rocha (2016), An Introduction to Clifford Algebras and Spinors):

  • The Hodge isomorphisms  ⋆ : ⋀V → ⋀V  and   : ⋀V → ⋀V  are distinct operators and cannot be conflated as one operator – the distinction is not made clear in this article, even though each is a Hodge isomorphism on its own space.
  • There are two "quasi-Hodge isomorphisms"   : ⋀V → ⋀V  and   : ⋀V → ⋀V , which require less structure to define (namely the – essentially arbitrary – choice of a top-degree n-vector), without needing a bilinear form, only a natural extension of the interior product from  ι : V × ⋀V → ⋀V  to the left contraction  ⌋ : ⋀V × ⋀V → ⋀V ). The quasi-Hodge isomorphisms are essentially the Levi-Civita tensors. (Side note: what is often referred to in physics as the "dual of a (totally antisymmetric) tensor" is typically the result of one of the two quasi-Hodge isomorphisms.)
  • Together with the musical isomorphisms    and    (naturally extended to  ⋀kV  and  ⋀kV ), these operators are all tightly related: with the only restriction being the scaling factor on the original choice of n-vector, we have that  ⋆ = = =  .

This would fit neatly into this article. It is also an approach that avoids the non-obvious extension of the bilinear form through the use of a determinant. —Quondum 18:27, 8 August 2017 (UTC)Reply

I notice that the operations usually used in tensor analysis under names such as dual tensor and Hodge dual are

 

and its inverse, which are really the quasi-Hodge isomorphisms, though in physics indices are generally raised and lowered so freely that the related tensors with raised and lowered indices are considered equivalent. In this article, it would probably be best to clarify the distinction. —Quondum 17:09, 10 August 2017 (UTC)Reply

The physics literature rarely dwells long on the (Hodge) dual, but when there is at least some dwelling, it is usually (I know of no exception) made clear that (on component form)
 
is the dual of
 
and not of
 
The physics dual is thus one of the ordinary duals. Evidently, it is raising of indices (musical isomorphism) composed with a quasi-dual. Naturally, it also comes in the other obvious version (involving lowering of indices). YohanN7 (talk) 06:56, 14 August 2017 (UTC)Reply
I see now that this is captured in the section Index notation for the star operator. YohanN7 (talk) 07:44, 14 August 2017 (UTC)Reply
Thanks. I've made the text a little clearer about the starting point and raising of the indices. —Quondum 11:26, 14 August 2017 (UTC)Reply
Your third bullet above would make a nice commutative diagram. It would also explain to the perplexed why the physics literature really can't be blamed for its sloppiness in this case. YohanN7 (talk) 13:35, 14 August 2017 (UTC)Reply

Hodge xxxx

edit

The article recently changed title from Hodge dual to Hodge isomorphism without prior consultation of the community which is standard when changing titles. By WP:COMMONNAME, any of the alternatives below is better.

Hit count using Google Scholar:

The present title gets this:

The terminology to be used in WP isn't what the terminology ought to be (according to some), but it should reflect what the terminology is. If there are logical arguments saying that the article refers to the map (which Hodge dual certainly can), as opposed so mapped elements, then Hodge star is a superior choice because it matches the notation, and is less likely to be confused with a single mapped element than Hodge dual. Besides, people apparently use it.

An article title's primary task is to be found by those searching for it. As for the current title, it should be reduced to "the Hodge star is an isomorphism". YohanN7 (talk) 09:53, 11 September 2017 (UTC)Reply

Google scholar needs some care of interpretation, not least of which is occurrence of a term with unrelated meaning. Google n-grams are more reliable for excluding terms, but is also not suitable for determining frequency of a term with a given meaning. This Google Ngram chart is probably adequate for ruling out "Hodge dual operator", "Hodge map", "Hodge mapping" and "Hodge isomorphism". Considering that one is a subphrase of the other, the frequency of "Hodge star" should be subtracted from that of "Hodge star operator", giving four phrases with roughly equal frequency of use in recent times. "Hodge dual" has multiple meanings, suggesting that its use to refer to the mapping rather than to its output element might even have a lower frequency than the others do, an as noted it has ambiguity issues. So I would think that the title should be "Hodge star operator", "Hodge star" or "Hodge operator". —Quondum 03:19, 17 September 2017 (UTC)Reply
Anyone of the four frequent ones would do. I like the ones with "star" in them for it matches the notation. As for ambiguity, I'd expect this article to answer both questions about the map and what is the dual of my single element. YohanN7 (talk) 13:59, 18 September 2017 (UTC)Reply
I have a very mild preference for Hodge star operator, but would like opinions from others too. —Quondum 02:12, 19 September 2017 (UTC)Reply
When it comes to nitpicking, I prefer an article's name that best denotes the map, even when this is defined by the effect on single elements. So map, operator, and isomorhism are preferable to me, because dual and star alone, appear to me as leaning to the image. Isomorhism might be too revealing already, and map too genral. Dual in Dual operator is too wishy-washy a word in my perception; i.e., -tadaa, here it comes- "Hodge star operator" is my favourite. :) Purgy (talk) 06:07, 19 September 2017 (UTC)Reply
This closely echoes my feelings. Unless we hear from someone else in the near future, I'll move it to "Hodge star operator" as apparently being the consensus, or at least acceptable to all (unless, of course, someone beats me to it). —Quondum 01:38, 22 September 2017 (UTC)Reply

See also WP:SET. —DIV (120.17.18.193 (talk) 10:16, 13 August 2018 (UTC))Reply

Clifford algebra???

edit

Is it really necessary to mix up notions of the Hodge star operator on differential forms with notions of a Clifford algebra (in the subsection Three dimensions of the section Examples)? I believe this creates much more confusion than clarity on the subject.

Also, use of the Einstein summation convention (in Expression in index notation) is not at all well-explained here. The mere link to the article Ricci calculus certainly does not help, since that article is about much more than the Einstein summation convention.

Go ahead and use a summation sign so that readers have a chance of understanding what is written!50.205.142.35 (talk) 22:08, 15 February 2020 (UTC)Reply

The tensor index notation refers to not only the Einstein summation convention used for brevity (and could be dispensed with if there is consensus on this), but also for the upper and lower index positioning. Both of these are well-suited to the use made of them here, but a fuller explanation would be appropriate.
I tend to agree that introducing Clifford algebra into an article for an example in a subject that is not based on it is maybe not the best idea (the exterior calculus is the usual context). Relating the expressions to Clifford algebra are handy for those who are familiar with it, but not for others. —Quondum 23:52, 15 February 2020 (UTC)Reply

Edit to lead seems problematic

edit
Quondum: Thanks for your comments. I am no expert on Hodge theory, but I do feel the article needs cleanup. Perhaps you can correct my edits, but avoid restoring the wandering, repetetive sections in the previous version. Mainly, I think the Euclidean 3-space case is the core motivation and intuitive picture of the operator, and should be in the intro. — Preceding unsigned comment added by Magyar25 (talkcontribs) 01:33, 12 March 2020 (UTC)Reply
Neither am I. I do not wish to impede your efforts in cleaning up the article. I just wanted you to be aware so that technical inaccuracies are limited. —Quondum 02:16, 12 March 2020 (UTC)Reply

Magyar25, I am a bit concerned about this edit, for a few reasons, including that

  • The lead should summarize the article; it should not in general contain technical information that is not explained in the article.
Do you mean the the bivectors? That is explained in the article. So is the defintion of the codifferential and the Laplace operator. –M
Maybe I have not looked closely enough; I was reading too much into your edit comment. We can review later whether the explanation in the body covers the topics in the lead adequately. —Quondum 02:16, 12 March 2020 (UTC)Reply
  • "definition of the Hodge codifferential as the Hodge dual of the exterior derivative" – this description of the codifferential is incorrect.
But the codifferential is  . How else would you describe this than as the Hodge dual of d (up to sign)? Perhaps, the Hodge dual conjugate of d? –M
Up to a sign, it is the (optionally, inverse) Hodge dual of the exterior derivative of the Hodge dual of a k-form; a description that tries to be too specific can be a mouthful for the lead. In the lead, a briefer description might do that omits an actual definition, such as simply that "it allows the codifferential to be defined". —Quondum 02:16, 12 March 2020 (UTC)Reply
  • "divergence of a vector field may be realized as the Hodge dual of gradient" – Huh? This is completely incorrect.
You're right: it's the Hodge dual (or conjugate) of d : 2-forms --> 3-forms. Thus, it is the codifferential opposite to grad. –M
You mean a differential operator that decreases the degree of a form rather than increasing it like d does? We'd need clearer wording for that. —Quondum 02:16, 12 March 2020 (UTC)Reply
This is not a detail, but one of the main reasons anyone cares about the Hodge operator. Anyone learning about it should hear about this application up front, not somewhere at the end. –M
Maybe I was reacting to the word "ultimately". This result applies only on restricted types of manifold, but the Hodge star remains useful for any pseudo-Riemannian manifold. (A highly modified version might be). Maybe it would sound better without the "ultimately". —Quondum 02:16, 12 March 2020 (UTC)Reply

Quondum 21:58, 11 March 2020 (UTC)Reply

Notation: I think the { {math|| } } environment really sux, and should be deprecated. Also, \bigwedge is too tall and obnoxious for inline formulas; \wedge is understated and elegant.

The appearance of non-<math> depends on the fonts selected in your browser, as well as personal taste – there is some variation between {{math}} (to closer match the<math> presentation) or not (to closer match the inline font) in WP articles, but consistency within an article is required, and a change needs consensus. To move significantly from an established presentation generally, within WP, and especially within an article is likely to be frowned on. Within <math> we should stick to reasonably common notation in the mathematics community. It seems pretty standard to use a larger symbol to indicate repeated operations, as in
 .
The fact that these are directly supported in math rendering packages is indicative of their general use in this way. A large capital lambda or big wedge seems typical to denote an exterior algebra. —Quondum 12:53, 12 March 2020 (UTC)Reply

Explanation of imminent revert

edit

Magyar25, I am going to revert the section content of Hodge star operator § Three dimensions to before these edits. It introduces undefined notation (det of a list of vectors, equating differential forms to matrices, hatted vectors, "matrix multiplication" of vectors), and introduces concepts that are not relevant and downright confusing in the context (Lie algebras, infinitesimal rotations, orthogonal groups, lie brackets, badly defined tensor products, etc.). —Quondum 00:38, 4 May 2020 (UTC)Reply

quondum, I will try to re-work to make it more understandable. As it is, "the correspondence between the vectors and the 3×3 skew-symmetric matrices" is completely obscure. This is an important geometric interpetation of the star, and should be in here.
I agree with that the mention of matrices is obscure; I see no need for the mention of matrices of any sort. I'm not sure that matrices are important for geometric interpretation (this seems to come from when vectors were taught to "be" an n-tuple of coordinates; this is actually way of confounding geometric intuition). Quondum 13:29, 4 May 2020 (UTC)Reply
No, no: There is an intrinsic, geometric, coordinate-free correspondence between an axis and an infinitesimal rotation (tangent vector of a curve within the orthogonal group SO(3), written as a skew-symmetric matrix). The Hodge star is equivalent to this correspondence. (Cross product becomes Lie bracket.) I'll try to post this later today.Magyar25 (talk) 16:17, 4 May 2020 (UTC)Reply
"written as a skew-symmetric matrix" – how do you propose to do this in a coordinate-free way?
Matrices are coordinate representions of linear operators
I know that, but they are not coordinate-free. One you introduce coordinates, you have to define a basis, and you have to show that the end result is independent of your choice of basis. Brevity is lost, and the article becomes unreadable. And you definitely cannot do what you did: directly equate a k-form with its matrix representation. —Quondum 02:08, 5 May 2020 (UTC)Reply
Anyhow, even mentioning a Lie algebra (or for that matter, rotations) here is confusing and IMO does not belong: it introduces concepts that are not used in the article, and are often not used in areas where the Hodge star is useful. —Quondum 17:48, 4 May 2020 (UTC)Reply
OK, I'll admit it's not central, but deserves a mention. Just look at the construction, and tell me it's not beautiful.
Also, the intrinsic definition of star is motivated by the triple product of 3-vectors, so you have to mention that. The triple product is a familiar, elementary formula which is a direct translation of the intrinsic definition (in its second form) into language of vector calculus.Magyar25 (talk) 16:17, 4 May 2020 (UTC)Reply
Something that I can't see is not beautiful to me. I'd have to study up on Lie algebras to get the concept, and over 90% of the readers of this article are not going to be familiar with Lie algebras at all. It ends up feeling to the reader like you're explaining the factorial through the gamma function. —Quondum 02:08, 5 May 2020 (UTC)Reply
"the intrinsic definition of star is motivated by the vector triple product"? I do not think it was, considering the history of Hodge theory. Quondum 13:29, 4 May 2020 (UTC)Reply
I think we are talking at cross purposes. I think it is safe to say that Hodge's motivation to define the Hodge star was not motivated by the vector triple product. The isomorphism of axial vectors with bivectors, and that this happens to correspond to the Hodge dual is interesting and illustrative; similarly for the isomorphism of trivectors and the pseudoscalars (relating the vector triple product and the exterior product of three vectors). I would call these illustrative examples of the Hodge star, illustrations rather than motivations for anything. —Quondum 17:48, 4 May 2020 (UTC)Reply
Why do we have to be limited by Hodge's motivation? We are trying to motivate the reader to understand. The point is, in this toy example, the "abstract, hard-to-understand" intrinsic definition appears naturally, whether Hodge cared or not.
It would help to use wording that means what you say. "the intrinsic definition of star is motivated by" reads as Hodge's motivation when he defined it. You mean something like "illustration of the value of the intrinsic definition with a familiar example". I think that was already achieved by the brief equations in the section. —Quondum 02:08, 5 May 2020 (UTC)Reply
"A general k-vector is a linear combination of decomposables, and this definition can be extended linearly. However, decomposable vectors are not linearly independent, but [...]": I'm sorry, I can't even parse this, and cannot figure out what you are trying to say. —Quondum 17:48, 4 May 2020 (UTC)Reply

Dual of the dual in 2 dimensions should be negative

edit

Uh...the articles states that in two dimensions:

 
 

But that means that

 

Now the square of a pseudoscalar isnt always -1 but in 2 and 3 dimensions it certainly is. So shouldnt the answer be -1?

Just granpa (talk) 17:12, 19 June 2020 (UTC)Reply

The section on duality states that, and I quote: for   in an n-dimensional space V, one has :  where s is the parity of the signature of the inner product on V, that is, the sign of the determinant of the matrix of the inner product with respect to any basis. So for n=2 and K=0 or 2 and s=1, the article is correct. If you are doing Minkowski-anything or string theory, then s=-1 and that would explain the pseudoscalar comment which I don't otherwise understand. 67.198.37.16 (talk) 17:08, 29 October 2020 (UTC)Reply

Five-pointed-star notation !?

edit

The five-pointed star notation seems to be that fabled thing called WP:OR; at least I've never seen it used anywhere but here. It wouldn't be a big deal except that it conflicts with the Moyal product and more generally with star product on the algebra of symbols, which always use the five-pointed star. What's more, this all being differential geom, there are texts that use both symbols at the same time ... so using the five-poited star here seems like a bad idea... are there any texts, anywhere at all, besides WP, that use the five-pointed star for the Hodge star?

The conversion to the five-pointed star happened in this edit, by a one-time contributor. I guess no one else has minded, so far. 67.198.37.16 (talk) 16:34, 29 October 2020 (UTC)Reply

Ugh. See, for example, phase space quantum mechanics which uses   for the Moyal product. In order to do phase space QM with differential forms, one needs the Hodge star as a plain-old asterisk. I'm sorely tempted to bulk-change the star back to an asterisk in this article. If you are reading this, please express an opinion. 67.198.37.16 (talk) 04:41, 3 November 2020 (UTC)Reply

Why the parameter "s" ???

edit

In the section Codifferential, this passage appears:

"The most important application of the Hodge star on manifolds is to define the codifferential   on k-forms. Let

 

where   is the exterior derivative or differential, and   for Riemannian manifolds."

But there is no mention of any application other than Riemannian manifolds.

I suggest either explaining something about the other cases, or else just setting s = 1 (modifying formulas appropriately) and deleting all references to this mysterious s. 2601:200:C000:1A0:F1D0:4B34:8877:BEE3 (talk) 18:08, 7 October 2021 (UTC)Reply

Improvements to the article

edit

In an encyclopedia article, it is never a good idea to use the Einstein summation convention (repeated indices get summed) when the use of the   symbol is much clearer, especially to non-professionals.

Another thing that ought to be avoided is the use of the numeral 1 to indicate an identity map from some mathematical object X to itself. Much better would be either to use the symbol 1X or the symbol idX, since that avoids ambiguity.

Error

edit

The section titled Geometric explanation begins as follows:

"The Hodge star is motivated by the correspondence between a subspace W of V and its orthogonal subspace (with respect to the inner product), where each space is endowed with an orientation and a numerical scaling factor. Specifically, a non-zero decomposable k-vector   corresponds by the Plücker embedding to the subspace   with oriented basis  , endowed with a scaling factor equal to the k-dimensional volume of the parallelepiped spanned by this basis (equal to the Gramian, the determinant of the matrix of inner products  )."

But suppose that an orthonormal basis {e1, ..., ek} of W is replaced by {2e1, ..., 2ek}. Then the Gramian determinant will be of a k×k matrix with 4's on the diagonal and zeroes elsewhere. Its determinant is 4k, which is the square of the actual volume of 2k spanned by the corresponding parallelotope (a k-dimensional cube of side 2).

Since this section is the only place in the article where the subject of the article (Hodge star) is actually defined, I hope someone knowledgeable about the subject can fix this mistake.

PS I also believe that referring to the Plücker embedding is entirely out of place here and contributes nothing of value to this article, where it serves mainly as a distraction from the already technical content of the Hodge star.