Closed-form formulas exist for calculating TVaR when the payoff of a portfolio
X
{\displaystyle X}
or a corresponding loss
L
=
−
X
{\displaystyle L=-X}
follows a specific continuous distribution. If
X
{\displaystyle X}
follows some probability distribution with the probability density function (p.d.f.)
f
{\displaystyle f}
and the cumulative distribution function (c.d.f.)
F
{\displaystyle F}
, the left-tail TVaR can be represented as
TVaR
α
(
X
)
=
E
[
−
X
|
X
≤
−
VaR
α
(
X
)
]
=
1
α
∫
0
α
VaR
γ
(
X
)
d
γ
=
−
1
α
∫
−
∞
F
−
1
(
α
)
x
f
(
x
)
d
x
.
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=\operatorname {E} [-X|X\leq -\operatorname {VaR} _{\alpha }(X)]={\frac {1}{\alpha }}\int _{0}^{\alpha }\operatorname {VaR} _{\gamma }(X)d\gamma =-{\frac {1}{\alpha }}\int _{-\infty }^{F^{-1}(\alpha )}xf(x)dx.}
For engineering or actuarial applications it is more common to consider the distribution of losses
L
=
−
X
{\displaystyle L=-X}
, in this case the right-tail TVaR is considered (typically for
α
{\displaystyle \alpha }
95% or 99%):
TVaR
α
right
(
L
)
=
E
[
L
∣
L
≥
VaR
α
(
L
)
]
=
1
1
−
α
∫
α
1
VaR
γ
(
L
)
d
γ
=
1
1
−
α
∫
F
−
1
(
α
)
+
∞
y
f
(
y
)
d
y
.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)=E[L\mid L\geq \operatorname {VaR} _{\alpha }(L)]={\frac {1}{1-\alpha }}\int _{\alpha }^{1}\operatorname {VaR} _{\gamma }(L)d\gamma ={\frac {1}{1-\alpha }}\int _{F^{-1}(\alpha )}^{+\infty }yf(y)dy.}
Since some formulas below were derived for the left-tail case and some for the right-tail case, the following reconciliations can be useful:
TVaR
α
(
X
)
=
−
1
α
E
[
X
]
+
1
−
α
α
TVaR
α
right
(
L
)
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-{\frac {1}{\alpha }}E[X]+{\frac {1-\alpha }{\alpha }}\operatorname {TVaR} _{\alpha }^{\text{right}}(L)}
and
TVaR
α
right
(
L
)
=
1
1
−
α
E
[
L
]
+
α
1
−
α
TVaR
α
(
X
)
.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)={\frac {1}{1-\alpha }}E[L]+{\frac {\alpha }{1-\alpha }}\operatorname {TVaR} _{\alpha }(X).}
If the payoff of a portfolio
X
{\displaystyle X}
follows normal (Gaussian) distribution with the p.d.f.
f
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
{\displaystyle f(x)={\frac {1}{{\sqrt {2\pi }}\sigma }}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
−
μ
+
σ
ϕ
(
Φ
−
1
(
α
)
)
α
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\mu +\sigma {\frac {\phi (\Phi ^{-1}(\alpha ))}{\alpha }},}
where
ϕ
(
x
)
=
1
2
π
e
−
x
2
/
2
{\textstyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{x^{2}}/{2}}}
is the standard normal p.d.f.,
Φ
(
x
)
{\displaystyle \Phi (x)}
is the standard normal c.d.f., so
Φ
−
1
(
α
)
{\displaystyle \Phi ^{-1}(\alpha )}
is the standard normal quantile.[ 9]
If the loss of a portfolio
L
{\displaystyle L}
follows normal distribution, the right-tail TVaR is equal to[ 10]
TVaR
α
right
(
L
)
=
μ
+
σ
ϕ
(
Φ
−
1
(
α
)
)
1
−
α
.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)=\mu +\sigma {\frac {\phi (\Phi ^{-1}(\alpha ))}{1-\alpha }}.}
Generalized Student's t-distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows generalized Student's t-distribution with the p.d.f.
f
(
x
)
=
Γ
(
ν
+
1
2
)
Γ
(
ν
2
)
π
ν
σ
(
1
+
1
ν
(
x
−
μ
σ
)
2
)
−
ν
+
1
2
{\displaystyle f(x)={\frac {\Gamma \left({\frac {\nu +1}{2}}\right)}{\Gamma \left({\frac {\nu }{2}}\right){\sqrt {\pi \nu }}\sigma }}\left(1+{\frac {1}{\nu }}\left({\frac {x-\mu }{\sigma }}\right)^{2}\right)^{-{\frac {\nu +1}{2}}}}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
−
μ
+
σ
ν
+
(
T
−
1
(
α
)
)
2
ν
−
1
τ
(
T
−
1
(
α
)
)
α
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\mu +\sigma {\frac {\nu +(\mathrm {T} ^{-1}(\alpha ))^{2}}{\nu -1}}{\frac {\tau (\mathrm {T} ^{-1}(\alpha ))}{\alpha }},}
where
τ
(
x
)
=
Γ
(
ν
+
1
2
)
Γ
(
ν
2
)
π
ν
(
1
+
x
2
ν
)
−
ν
+
1
2
{\displaystyle \tau (x)={\frac {\Gamma \left({\frac {\nu +1}{2}}\right)}{\Gamma \left({\frac {\nu }{2}}\right){\sqrt {\pi \nu }}}}\left(1+{\frac {x^{2}}{\nu }}\right)^{-{\frac {\nu +1}{2}}}}
is the standard t-distribution p.d.f.,
T
(
x
)
{\displaystyle \mathrm {T} (x)}
is the standard t-distribution c.d.f., so
T
−
1
(
α
)
{\displaystyle \mathrm {T} ^{-1}(\alpha )}
is the standard t-distribution quantile.[ 9]
If the loss of a portfolio
L
{\displaystyle L}
follows generalized Student's t-distribution, the right-tail TVaR is equal to[ 10]
TVaR
α
right
(
L
)
=
μ
+
σ
ν
+
(
T
−
1
(
α
)
)
2
ν
−
1
τ
(
T
−
1
(
α
)
)
1
−
α
.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)=\mu +\sigma {\frac {\nu +(\mathrm {T} ^{-1}(\alpha ))^{2}}{\nu -1}}{\frac {\tau (\mathrm {T} ^{-1}(\alpha ))}{1-\alpha }}.}
Laplace distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows Laplace distribution with the p.d.f.
f
(
x
)
=
1
2
b
e
−
|
x
−
μ
|
b
{\displaystyle f(x)={\frac {1}{2b}}e^{-{\frac {|x-\mu |}{b}}}}
and the c.d.f.
F
(
x
)
=
{
1
−
1
2
e
−
x
−
μ
b
if
x
≥
μ
,
1
2
e
x
−
μ
b
if
x
<
μ
.
{\displaystyle F(x)={\begin{cases}1-{\frac {1}{2}}e^{-{\frac {x-\mu }{b}}}&{\text{if }}x\geq \mu ,\\{\frac {1}{2}}e^{\frac {x-\mu }{b}}&{\text{if }}x<\mu .\end{cases}}}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
−
μ
+
b
(
1
−
ln
2
α
)
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\mu +b(1-\ln 2\alpha )}
for
α
≤
0.5
{\displaystyle \alpha \leq 0.5}
.[ 9]
If the loss of a portfolio
L
{\displaystyle L}
follows Laplace distribution, the right-tail TVaR is equal to[ 10]
TVaR
α
right
(
L
)
=
{
μ
+
b
α
1
−
α
(
1
−
ln
2
α
)
if
α
<
0.5
,
μ
+
b
[
1
−
ln
(
2
(
1
−
α
)
)
]
if
α
≥
0.5.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)={\begin{cases}\mu +b{\frac {\alpha }{1-\alpha }}(1-\ln 2\alpha )&{\text{if }}\alpha <0.5,\\[1ex]\mu +b[1-\ln(2(1-\alpha ))]&{\text{if }}\alpha \geq 0.5.\end{cases}}}
Logistic distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows logistic distribution with the p.d.f.
f
(
x
)
=
1
s
e
−
x
−
μ
s
(
1
+
e
−
x
−
μ
s
)
−
2
{\displaystyle f(x)={\frac {1}{s}}e^{-{\frac {x-\mu }{s}}}\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-2}}
and the c.d.f.
F
(
x
)
=
(
1
+
e
−
x
−
μ
s
)
−
1
{\displaystyle F(x)=\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-1}}
then the left-tail TVaR is equal to[ 9]
TVaR
α
(
X
)
=
−
μ
+
s
ln
(
1
−
α
)
1
−
1
α
α
.
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\mu +s\ln {\frac {(1-\alpha )^{1-{\frac {1}{\alpha }}}}{\alpha }}.}
If the loss of a portfolio
L
{\displaystyle L}
follows logistic distribution , the right-tail TVaR is equal to[ 10]
TVaR
α
right
(
L
)
=
μ
+
s
−
α
ln
α
−
(
1
−
α
)
ln
(
1
−
α
)
1
−
α
.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)=\mu +s{\frac {-\alpha \ln \alpha -(1-\alpha )\ln(1-\alpha )}{1-\alpha }}.}
Exponential distribution
edit
If the loss of a portfolio
L
{\displaystyle L}
follows exponential distribution with the p.d.f.
f
(
x
)
=
{
λ
e
−
λ
x
if
x
≥
0
,
0
if
x
<
0.
{\displaystyle f(x)={\begin{cases}\lambda e^{-\lambda x}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}}
and the c.d.f.
F
(
x
)
=
{
1
−
e
−
λ
x
if
x
≥
0
,
0
if
x
<
0.
{\displaystyle F(x)={\begin{cases}1-e^{-\lambda x}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}}
then the right-tail TVaR is equal to[ 10]
TVaR
α
right
(
L
)
=
−
ln
(
1
−
α
)
+
1
λ
.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)={\frac {-\ln(1-\alpha )+1}{\lambda }}.}
If the loss of a portfolio
L
{\displaystyle L}
follows Pareto distribution with the p.d.f.
f
(
x
)
=
{
a
x
m
a
x
a
+
1
if
x
≥
x
m
,
0
if
x
<
x
m
.
{\displaystyle f(x)={\begin{cases}{\frac {ax_{m}^{a}}{x^{a+1}}}&{\text{if }}x\geq x_{m},\\0&{\text{if }}x<x_{m}.\end{cases}}}
and the c.d.f.
F
(
x
)
=
{
1
−
(
x
m
/
x
)
a
if
x
≥
x
m
,
0
if
x
<
x
m
.
{\displaystyle F(x)={\begin{cases}1-(x_{m}/x)^{a}&{\text{if }}x\geq x_{m},\\0&{\text{if }}x<x_{m}.\end{cases}}}
then the right-tail TVaR is equal to[ 10]
TVaR
α
right
(
L
)
=
x
m
a
(
1
−
α
)
1
/
a
(
a
−
1
)
.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)={\frac {x_{m}a}{(1-\alpha )^{1/a}(a-1)}}.}
Generalized Pareto distribution (GPD)
edit
If the loss of a portfolio
L
{\displaystyle L}
follows GPD with the p.d.f.
f
(
x
)
=
1
s
(
1
+
ξ
(
x
−
μ
)
s
)
(
−
1
ξ
−
1
)
{\displaystyle f(x)={\frac {1}{s}}\left(1+{\frac {\xi (x-\mu )}{s}}\right)^{\left(-{\frac {1}{\xi }}-1\right)}}
and the c.d.f.
F
(
x
)
=
{
1
−
(
1
+
ξ
(
x
−
μ
)
s
)
−
1
ξ
if
ξ
≠
0
,
1
−
exp
(
−
x
−
μ
s
)
if
ξ
=
0.
{\displaystyle F(x)={\begin{cases}1-\left(1+{\frac {\xi (x-\mu )}{s}}\right)^{-{\frac {1}{\xi }}}&{\text{if }}\xi \neq 0,\\1-\exp \left(-{\frac {x-\mu }{s}}\right)&{\text{if }}\xi =0.\end{cases}}}
then the right-tail TVaR is equal to
TVaR
α
right
(
L
)
=
{
μ
+
s
[
(
1
−
α
)
−
ξ
1
−
ξ
+
(
1
−
α
)
−
ξ
−
1
ξ
]
if
ξ
≠
0
,
μ
+
s
[
1
−
ln
(
1
−
α
)
]
if
ξ
=
0.
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)={\begin{cases}\mu +s\left[{\frac {(1-\alpha )^{-\xi }}{1-\xi }}+{\frac {(1-\alpha )^{-\xi }-1}{\xi }}\right]&{\text{if }}\xi \neq 0,\\\mu +s[1-\ln(1-\alpha )]&{\text{if }}\xi =0.\end{cases}}}
and the VaR is equal to[ 10]
V
a
R
α
(
L
)
=
{
μ
+
s
(
1
−
α
)
−
ξ
−
1
ξ
if
ξ
≠
0
,
μ
−
s
ln
(
1
−
α
)
if
ξ
=
0.
{\displaystyle \mathrm {VaR} _{\alpha }(L)={\begin{cases}\mu +s{\frac {(1-\alpha )^{-\xi }-1}{\xi }}&{\text{if }}\xi \neq 0,\\\mu -s\ln(1-\alpha )&{\text{if }}\xi =0.\end{cases}}}
Weibull distribution
edit
If the loss of a portfolio
L
{\displaystyle L}
follows Weibull distribution with the p.d.f.
f
(
x
)
=
{
k
λ
(
x
λ
)
k
−
1
e
−
(
x
/
λ
)
k
if
x
≥
0
,
0
if
x
<
0.
{\displaystyle f(x)={\begin{cases}{\frac {k}{\lambda }}\left({\frac {x}{\lambda }}\right)^{k-1}e^{-(x/\lambda )^{k}}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}}
and the c.d.f.
F
(
x
)
=
{
1
−
e
−
(
x
/
λ
)
k
if
x
≥
0
,
0
if
x
<
0.
{\displaystyle F(x)={\begin{cases}1-e^{-(x/\lambda )^{k}}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}}
then the right-tail TVaR is equal to
TVaR
α
right
(
L
)
=
λ
1
−
α
Γ
(
1
+
1
k
,
−
ln
(
1
−
α
)
)
,
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)={\frac {\lambda }{1-\alpha }}\Gamma \left(1+{\frac {1}{k}},-\ln(1-\alpha )\right),}
where
Γ
(
s
,
x
)
{\displaystyle \Gamma (s,x)}
is the upper incomplete gamma function .[ 10]
Generalized extreme value distribution (GEV)
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows GEV with the p.d.f.
f
(
x
)
=
{
1
σ
(
1
+
ξ
x
−
μ
σ
)
−
1
ξ
−
1
exp
[
−
(
1
+
ξ
x
−
μ
σ
)
−
1
ξ
]
if
ξ
≠
0
,
1
σ
e
−
x
−
μ
σ
e
−
e
−
x
−
μ
σ
if
ξ
=
0.
{\displaystyle f(x)={\begin{cases}{\frac {1}{\sigma }}\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{\frac {1}{\xi }}-1}\exp \left[-\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{\frac {1}{\xi }}}\right]&{\text{if }}\xi \neq 0,\\{\frac {1}{\sigma }}e^{-{\frac {x-\mu }{\sigma }}}e^{-e^{-{\frac {x-\mu }{\sigma }}}}&{\text{if }}\xi =0.\end{cases}}}
and the c.d.f.
F
(
x
)
=
{
exp
(
−
(
1
+
ξ
x
−
μ
σ
)
−
1
ξ
)
if
ξ
≠
0
,
exp
(
−
e
−
x
−
μ
σ
)
if
ξ
=
0.
{\displaystyle F(x)={\begin{cases}\exp \left(-\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{\frac {1}{\xi }}}\right)&{\text{if }}\xi \neq 0,\\\exp \left(-e^{-{\frac {x-\mu }{\sigma }}}\right)&{\text{if }}\xi =0.\end{cases}}}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
{
−
μ
−
σ
α
ξ
[
Γ
(
1
−
ξ
,
−
ln
α
)
−
α
]
if
ξ
≠
0
,
−
μ
−
σ
α
[
li
(
α
)
−
α
ln
(
−
ln
α
)
]
if
ξ
=
0.
{\displaystyle \operatorname {TVaR} _{\alpha }(X)={\begin{cases}-\mu -{\frac {\sigma }{\alpha \xi }}\left[\Gamma (1-\xi ,-\ln \alpha )-\alpha \right]&{\text{if }}\xi \neq 0,\\-\mu -{\frac {\sigma }{\alpha }}\left[{\text{li}}(\alpha )-\alpha \ln(-\ln \alpha )\right]&{\text{if }}\xi =0.\end{cases}}}
and the VaR is equal to
V
a
R
α
(
X
)
=
{
−
μ
−
σ
ξ
[
(
−
ln
α
)
−
ξ
−
1
]
if
ξ
≠
0
,
−
μ
+
σ
ln
(
−
ln
α
)
if
ξ
=
0.
{\displaystyle \mathrm {VaR} _{\alpha }(X)={\begin{cases}-\mu -{\frac {\sigma }{\xi }}\left[(-\ln \alpha )^{-\xi }-1\right]&{\text{if }}\xi \neq 0,\\-\mu +\sigma \ln(-\ln \alpha )&{\text{if }}\xi =0.\end{cases}}}
where
Γ
(
s
,
x
)
{\displaystyle \Gamma (s,x)}
is the upper incomplete gamma function ,
li
(
x
)
=
∫
d
x
ln
x
{\displaystyle {\text{li}}(x)=\int {\frac {dx}{\ln x}}}
is the logarithmic integral function .[ 11]
If the loss of a portfolio
L
{\displaystyle L}
follows GEV , then the right-tail TVaR is equal to
TVaR
α
(
X
)
=
{
μ
+
σ
(
1
−
α
)
ξ
[
γ
(
1
−
ξ
,
−
ln
α
)
−
(
1
−
α
)
]
if
ξ
≠
0
,
μ
+
σ
1
−
α
[
y
−
li
(
α
)
+
α
ln
(
−
ln
α
)
]
if
ξ
=
0.
{\displaystyle \operatorname {TVaR} _{\alpha }(X)={\begin{cases}\mu +{\frac {\sigma }{(1-\alpha )\xi }}\left[\gamma (1-\xi ,-\ln \alpha )-(1-\alpha )\right]&{\text{if }}\xi \neq 0,\\\mu +{\frac {\sigma }{1-\alpha }}\left[y-{\text{li}}(\alpha )+\alpha \ln(-\ln \alpha )\right]&{\text{if }}\xi =0.\end{cases}}}
where
γ
(
s
,
x
)
{\displaystyle \gamma (s,x)}
is the lower incomplete gamma function ,
y
{\displaystyle y}
is the Euler-Mascheroni constant .[ 10]
Generalized hyperbolic secant (GHS) distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows GHS distribution with the p.d.f.
f
(
x
)
=
1
2
σ
sech
(
π
2
x
−
μ
σ
)
{\displaystyle f(x)={\frac {1}{2\sigma }}\operatorname {sech} \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right)}
and the c.d.f.
F
(
x
)
=
2
π
arctan
[
exp
(
π
2
x
−
μ
σ
)
]
{\displaystyle F(x)={\frac {2}{\pi }}\arctan \left[\exp \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right)\right]}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
−
μ
−
2
σ
π
ln
(
tan
π
α
2
)
−
2
σ
π
2
α
i
[
Li
2
(
−
i
tan
π
α
2
)
−
Li
2
(
i
tan
π
α
2
)
]
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\mu -{\frac {2\sigma }{\pi }}\ln \left(\tan {\frac {\pi \alpha }{2}}\right)-{\frac {2\sigma }{\pi ^{2}\alpha }}i\left[{\text{Li}}_{2}\left(-i\tan {\frac {\pi \alpha }{2}}\right)-{\text{Li}}_{2}\left(i\tan {\frac {\pi \alpha }{2}}\right)\right],}
where
Li
2
{\displaystyle {\text{Li}}_{2}}
is the dilogarithm and
i
=
−
1
{\displaystyle i={\sqrt {-1}}}
is the imaginary unit.[ 11]
Johnson's SU-distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows Johnson's SU-distribution with the c.d.f.
F
(
x
)
=
Φ
[
γ
+
δ
sinh
−
1
(
x
−
ξ
λ
)
]
{\displaystyle F(x)=\Phi \left[\gamma +\delta \sinh ^{-1}\left({\frac {x-\xi }{\lambda }}\right)\right]}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
−
ξ
−
λ
2
α
[
exp
(
1
−
2
γ
δ
2
δ
2
)
Φ
(
Φ
−
1
(
α
)
−
1
δ
)
−
exp
(
1
+
2
γ
δ
2
δ
2
)
Φ
(
Φ
−
1
(
α
)
+
1
δ
)
]
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\xi -{\frac {\lambda }{2\alpha }}\left[\exp \left({\frac {1-2\gamma \delta }{2\delta ^{2}}}\right)\Phi \left(\Phi ^{-1}(\alpha )-{\frac {1}{\delta }}\right)-\exp \left({\frac {1+2\gamma \delta }{2\delta ^{2}}}\right)\Phi \left(\Phi ^{-1}(\alpha )+{\frac {1}{\delta }}\right)\right],}
where
Φ
{\displaystyle \Phi }
is the c.d.f. of the standard normal distribution.[ 12]
Burr type XII distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows the Burr type XII distribution with the p.d.f.
f
(
x
)
=
c
k
β
(
x
−
γ
β
)
c
−
1
[
1
+
(
x
−
γ
β
)
c
]
−
k
−
1
{\displaystyle f(x)={\frac {ck}{\beta }}\left({\frac {x-\gamma }{\beta }}\right)^{c-1}\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k-1}}
and the c.d.f.
F
(
x
)
=
1
−
[
1
+
(
x
−
γ
β
)
c
]
−
k
,
{\displaystyle F(x)=1-\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k},}
the left-tail TVaR is equal to
TVaR
α
(
X
)
=
−
γ
−
β
α
(
(
1
−
α
)
−
1
/
k
−
1
)
1
/
c
[
α
−
1
+
2
F
1
(
1
c
,
k
;
1
+
1
c
;
1
−
(
1
−
α
)
−
1
/
k
)
]
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}\left((1-\alpha )^{-1/k}-1\right)^{1/c}\left[\alpha -1+{_{2}F_{1}}\left({\frac {1}{c}},k;1+{\frac {1}{c}};1-(1-\alpha )^{-1/k}\right)\right],}
where
2
F
1
{\displaystyle _{2}F_{1}}
is the hypergeometric function . Alternatively,[ 11]
TVaR
α
(
X
)
=
−
γ
−
β
α
c
k
c
+
1
(
(
1
−
α
)
−
1
/
k
−
1
)
1
+
1
c
2
F
1
(
1
+
1
c
,
k
+
1
;
2
+
1
c
;
1
−
(
1
−
α
)
−
1
/
k
)
.
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}{\frac {ck}{c+1}}\left((1-\alpha )^{-1/k}-1\right)^{1+{\frac {1}{c}}}{_{2}F_{1}}\left(1+{\frac {1}{c}},k+1;2+{\frac {1}{c}};1-(1-\alpha )^{-1/k}\right).}
If the payoff of a portfolio
X
{\displaystyle X}
follows the Dagum distribution with the p.d.f.
f
(
x
)
=
c
k
β
(
x
−
γ
β
)
c
k
−
1
[
1
+
(
x
−
γ
β
)
c
]
−
k
−
1
{\displaystyle f(x)={\frac {ck}{\beta }}\left({\frac {x-\gamma }{\beta }}\right)^{ck-1}\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k-1}}
and the c.d.f.
F
(
x
)
=
[
1
+
(
x
−
γ
β
)
−
c
]
−
k
,
{\displaystyle F(x)=\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{-c}\right]^{-k},}
the left-tail TVaR is equal to
TVaR
α
(
X
)
=
−
γ
−
β
α
c
k
c
k
+
1
(
α
−
1
/
k
−
1
)
−
k
−
1
c
2
F
1
(
k
+
1
,
k
+
1
c
;
k
+
1
+
1
c
;
−
1
α
−
1
/
k
−
1
)
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}{\frac {ck}{ck+1}}\left(\alpha ^{-1/k}-1\right)^{-k-{\frac {1}{c}}}{_{2}F_{1}}\left(k+1,k+{\frac {1}{c}};k+1+{\frac {1}{c}};-{\frac {1}{\alpha ^{-1/k}-1}}\right),}
where
2
F
1
{\displaystyle _{2}F_{1}}
is the hypergeometric function .[ 11]
Lognormal distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows lognormal distribution , i.e. the random variable
ln
(
1
+
X
)
{\displaystyle \ln(1+X)}
follows normal distribution with the p.d.f.
f
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
,
{\displaystyle f(x)={\frac {1}{{\sqrt {2\pi }}\sigma }}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}},}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
1
−
exp
(
μ
+
σ
2
2
)
Φ
(
Φ
−
1
(
α
)
−
σ
)
α
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=1-\exp \left(\mu +{\frac {\sigma ^{2}}{2}}\right){\frac {\Phi (\Phi ^{-1}(\alpha )-\sigma )}{\alpha }},}
where
Φ
(
x
)
{\displaystyle \Phi (x)}
is the standard normal c.d.f., so
Φ
−
1
(
α
)
{\displaystyle \Phi ^{-1}(\alpha )}
is the standard normal quantile.[ 13]
Log-logistic distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows log-logistic distribution , i.e. the random variable
ln
(
1
+
X
)
{\displaystyle \ln(1+X)}
follows logistic distribution with the p.d.f.
f
(
x
)
=
1
s
e
−
x
−
μ
s
(
1
+
e
−
x
−
μ
s
)
−
2
,
{\displaystyle f(x)={\frac {1}{s}}e^{-{\frac {x-\mu }{s}}}\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-2},}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
1
−
e
μ
α
I
α
(
1
+
s
,
1
−
s
)
π
s
sin
π
s
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=1-{\frac {e^{\mu }}{\alpha }}I_{\alpha }(1+s,1-s){\frac {\pi s}{\sin \pi s}},}
where
I
α
{\displaystyle I_{\alpha }}
is the regularized incomplete beta function ,
I
α
(
a
,
b
)
=
B
α
(
a
,
b
)
B
(
a
,
b
)
{\displaystyle I_{\alpha }(a,b)={\frac {\mathrm {B} _{\alpha }(a,b)}{\mathrm {B} (a,b)}}}
.
As the incomplete beta function is defined only for positive arguments, for a more generic case the left-tail TVaR can be expressed with the hypergeometric function :[ 13]
TVaR
α
(
X
)
=
1
−
e
μ
α
s
s
+
1
2
F
1
(
s
,
s
+
1
;
s
+
2
;
α
)
.
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=1-{\frac {e^{\mu }\alpha ^{s}}{s+1}}{_{2}F_{1}}(s,s+1;s+2;\alpha ).}
If the loss of a portfolio
L
{\displaystyle L}
follows log-logistic distribution with p.d.f.
f
(
x
)
=
b
a
(
x
/
a
)
b
−
1
(
1
+
(
x
/
a
)
b
)
2
{\displaystyle f(x)={\frac {{\frac {b}{a}}(x/a)^{b-1}}{(1+(x/a)^{b})^{2}}}}
and c.d.f.
F
(
x
)
=
1
1
+
(
x
/
a
)
−
b
,
{\displaystyle F(x)={\frac {1}{1+(x/a)^{-b}}},}
then the right-tail TVaR is equal to
TVaR
α
right
(
L
)
=
a
1
−
α
[
π
b
csc
(
π
b
)
−
B
α
(
1
b
+
1
,
1
−
1
b
)
]
,
{\displaystyle \operatorname {TVaR} _{\alpha }^{\text{right}}(L)={\frac {a}{1-\alpha }}\left[{\frac {\pi }{b}}\csc \left({\frac {\pi }{b}}\right)-\mathrm {B} _{\alpha }\left({\frac {1}{b}}+1,1-{\frac {1}{b}}\right)\right],}
where
B
α
{\displaystyle B_{\alpha }}
is the incomplete beta function .[ 10]
Log-Laplace distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows log-Laplace distribution , i.e. the random variable
ln
(
1
+
X
)
{\displaystyle \ln(1+X)}
follows Laplace distribution the p.d.f.
f
(
x
)
=
1
2
b
e
−
|
x
−
μ
|
b
,
{\displaystyle f(x)={\frac {1}{2b}}e^{-{\frac {|x-\mu |}{b}}},}
then the left-tail TVaR is equal to[ 13]
TVaR
α
(
X
)
=
{
1
−
e
μ
(
2
α
)
b
b
+
1
if
α
≤
0.5
,
1
−
e
μ
2
−
b
α
(
b
−
1
)
[
(
1
−
α
)
(
1
−
b
)
−
1
]
if
α
>
0.5.
{\displaystyle \operatorname {TVaR} _{\alpha }(X)={\begin{cases}1-{\frac {e^{\mu }(2\alpha )^{b}}{b+1}}&{\text{if }}\alpha \leq 0.5,\\1-{\frac {e^{\mu }2^{-b}}{\alpha (b-1)}}\left[(1-\alpha )^{(1-b)}-1\right]&{\text{if }}\alpha >0.5.\end{cases}}}
Log-generalized hyperbolic secant (log-GHS) distribution
edit
If the payoff of a portfolio
X
{\displaystyle X}
follows log-GHS distribution, i.e. the random variable
ln
(
1
+
X
)
{\displaystyle \ln(1+X)}
follows GHS distribution with the p.d.f.
f
(
x
)
=
1
2
σ
sech
(
π
2
x
−
μ
σ
)
,
{\displaystyle f(x)={\frac {1}{2\sigma }}\operatorname {sech} \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right),}
then the left-tail TVaR is equal to
TVaR
α
(
X
)
=
1
−
1
α
(
σ
+
π
/
2
)
(
tan
π
α
2
exp
π
μ
2
σ
)
2
σ
/
π
tan
π
α
2
2
F
1
(
1
,
1
2
+
σ
π
;
3
2
+
σ
π
;
−
tan
(
π
α
2
)
2
)
,
{\displaystyle \operatorname {TVaR} _{\alpha }(X)=1-{\frac {1}{\alpha (\sigma +{\pi /2})}}\left(\tan {\frac {\pi \alpha }{2}}\exp {\frac {\pi \mu }{2\sigma }}\right)^{2\sigma /\pi }\tan {\frac {\pi \alpha }{2}}{_{2}F_{1}}\left(1,{\frac {1}{2}}+{\frac {\sigma }{\pi }};{\frac {3}{2}}+{\frac {\sigma }{\pi }};-\tan \left({\frac {\pi \alpha }{2}}\right)^{2}\right),}
where
2
F
1
{\displaystyle _{2}F_{1}}
is the hypergeometric function .[ 13]