A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, October 24, 2098, with a magnitude of 0.0056. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Solar eclipse of October 24, 2098 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | −1.5407 |
Magnitude | 0.0056 |
Maximum eclipse | |
Coordinates | 61°48′S 95°30′W / 61.8°S 95.5°W |
Times (UTC) | |
Greatest eclipse | 10:36:11 |
References | |
Saros | 164 (1 of 80) |
Catalog # (SE5000) | 9730 |
This minor eclipse is the first solar eclipse of Saros cycle 164. It is the shallowest solar eclipse of the 21st century; at best, in a remote location within the Southern Ocean the moon will block out 0.56% of the sun's diameter with the sun barely above the horizon. Gamma is equal to −1.5407, which is also farther from zero than any other solar eclipse in the century. The eclipse is not listed by some sources.[1] There will not be a shallower partial eclipse until August 23, 2883.
Eclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2098 October 24 at 10:25:24.3 UTC |
Greatest Eclipse | 2098 October 24 at 10:36:10.8 UTC |
Last Penumbral External Contact | 2098 October 24 at 10:46:29.2 UTC |
Ecliptic Conjunction | 2098 October 24 at 10:52:05.9 UTC |
Equatorial Conjunction | 2098 October 24 at 11:56:02.8 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.00568 |
Eclipse Obscuration | 0.00051 |
Gamma | −1.54072 |
Sun Right Ascension | 13h57m42.1s |
Sun Declination | -12°01'06.6" |
Sun Semi-Diameter | 16'04.5" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 13h55m00.2s |
Moon Declination | -13°22'41.3" |
Moon Semi-Diameter | 16'04.0" |
Moon Equatorial Horizontal Parallax | 0°58'57.8" |
ΔT | 122.4 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
September 25 Descending node (new moon) |
October 10 Ascending node (full moon) |
October 24 Descending node (new moon) |
---|---|---|
Partial solar eclipse Solar Saros 126 |
Total lunar eclipse Lunar Saros 138 |
Partial solar eclipse Solar Saros 164 |
Related eclipses
editEclipses in 2098
edit- A partial solar eclipse on April 1.
- A total lunar eclipse on April 15.
- A partial solar eclipse on September 25.
- A total lunar eclipse on October 10.
- A partial solar eclipse on October 24.
Solar Saros 164
edit- Followed by: Solar eclipse of November 4, 2116
Solar eclipses of 2094–2098
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The solar eclipses on January 16, 2094 (total) and July 12, 2094 (partial) occur in the previous lunar year eclipse set, and the partial solar eclipses on April 1, 2098 and September 25, 2098 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2094 to 2098 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | June 13, 2094 Partial |
−1.4613 | 124 | December 7, 2094 Partial |
1.1547 | |
129 | June 2, 2095 Total |
−0.6396 | 134 | November 27, 2095 Annular |
0.4903 | |
139 | May 22, 2096 Total |
0.1196 | 144 | November 15, 2096 Annular |
−0.20 | |
149 | May 11, 2097 Total |
0.8516 | 154 | November 4, 2097 Annular |
−0.8926 | |
159 | May 1, 2098 | 164 | October 24, 2098 Partial |
−1.5407 |
Saros 164
editThis eclipse is a part of Saros series 164, repeating every 18 years, 11 days, and containing 80 events. The series will start with a partial solar eclipse on October 24, 2098. It contains total eclipses from June 1, 2459 through June 20, 3090; hybrid eclipses from July 1, 3108 through August 3, 3162; and annular eclipses from August 13, 3180 through September 4, 3216. The series ends at member 80 as a partial eclipse on March 10, 3523. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 26 at 6 minutes, 30 seconds on July 25, 2549, and the longest duration of annularity was produced by member 63 at 1 minutes, 21 seconds on September 4, 3216. All eclipses in this series occur at the Moon’s descending node of orbit.[4]
Series members 1–6 occur between 2098 and 2200: | ||
---|---|---|
1 | 2 | 3 |
October 24, 2098 |
November 4, 2116 |
November 16, 2134 |
4 | 5 | 6 |
November 26, 2152 |
December 7, 2170 |
December 18, 2188 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between June 1, 2011 and October 24, 2098 | ||||
---|---|---|---|---|
May 31–June 1 | March 19–20 | January 5–6 | October 24–25 | August 12–13 |
118 | 120 | 122 | 124 | 126 |
June 1, 2011 |
March 20, 2015 |
January 6, 2019 |
October 25, 2022 |
August 12, 2026 |
128 | 130 | 132 | 134 | 136 |
June 1, 2030 |
March 20, 2034 |
January 5, 2038 |
October 25, 2041 |
August 12, 2045 |
138 | 140 | 142 | 144 | 146 |
May 31, 2049 |
March 20, 2053 |
January 5, 2057 |
October 24, 2060 |
August 12, 2064 |
148 | 150 | 152 | 154 | 156 |
May 31, 2068 |
March 19, 2072 |
January 6, 2076 |
October 24, 2079 |
August 13, 2083 |
158 | 160 | 162 | 164 | |
June 1, 2087 |
October 24, 2098 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipse on October 24, 2098 (part of Saros 164) is also a part of this series but is not included in the table below.
Series members between 1801 and 2011 | ||||
---|---|---|---|---|
February 11, 1804 (Saros 137) |
January 10, 1815 (Saros 138) |
December 9, 1825 (Saros 139) |
November 9, 1836 (Saros 140) |
October 9, 1847 (Saros 141) |
September 7, 1858 (Saros 142) |
August 7, 1869 (Saros 143) |
July 7, 1880 (Saros 144) |
June 6, 1891 (Saros 145) |
May 7, 1902 (Saros 146) |
April 6, 1913 (Saros 147) |
March 5, 1924 (Saros 148) |
February 3, 1935 (Saros 149) |
January 3, 1946 (Saros 150) |
December 2, 1956 (Saros 151) |
November 2, 1967 (Saros 152) |
October 2, 1978 (Saros 153) |
August 31, 1989 (Saros 154) |
July 31, 2000 (Saros 155) |
July 1, 2011 (Saros 156) |
References
edit- ^ "Solar and Lunar Eclipses Worldwide – 2098". www.timeanddate.com. Retrieved 2023-12-15.
- ^ "Partial Solar Eclipse of 2098 Oct 24". EclipseWise.com. Retrieved 25 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 164". eclipse.gsfc.nasa.gov.