A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, November 3, 1975,[1] with a magnitude of 0.9588. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Solar eclipse of November 3, 1975 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | −1.0248 |
Magnitude | 0.9588 |
Maximum eclipse | |
Coordinates | 70°24′S 161°42′W / 70.4°S 161.7°W |
Times (UTC) | |
Greatest eclipse | 13:15:54 |
References | |
Saros | 123 (51 of 70) |
Catalog # (SE5000) | 9455 |
A partial eclipse was visible for parts of southern South America and Antarctica.
Eclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1975 November 03 at 11:15:40.6 UTC |
Ecliptic Conjunction | 1975 November 03 at 13:05:32.0 UTC |
Greatest Eclipse | 1975 November 03 at 13:15:54.3 UTC |
Equatorial Conjunction | 1975 November 03 at 13:40:06.5 UTC |
Last Penumbral External Contact | 1975 November 03 at 15:16:00.1 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.95883 |
Eclipse Obscuration | 0.95347 |
Gamma | −1.02475 |
Sun Right Ascension | 14h32m18.5s |
Sun Declination | -14°58'14.2" |
Sun Semi-Diameter | 16'07.4" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 14h31m21.8s |
Moon Declination | -15°58'31.8" |
Moon Semi-Diameter | 16'28.7" |
Moon Equatorial Horizontal Parallax | 1°00'28.4" |
ΔT | 46.3 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
November 3 Ascending node (new moon) |
November 18 Descending node (full moon) |
---|---|
Partial solar eclipse Solar Saros 123 |
Total lunar eclipse Lunar Saros 135 |
Related eclipses
editEclipses in 1975
edit- A partial solar eclipse on May 11.
- A total lunar eclipse on May 25.
- A partial solar eclipse on November 3.
- A total lunar eclipse on November 18.
Metonic
edit- Preceded by: Solar eclipse of January 16, 1972
- Followed by: Solar eclipse of August 22, 1979
Tzolkinex
edit- Preceded by: Solar eclipse of September 22, 1968
- Followed by: Solar eclipse of December 15, 1982
Half-Saros
edit- Preceded by: Lunar eclipse of October 29, 1966
- Followed by: Lunar eclipse of November 8, 1984
Tritos
edit- Preceded by: Solar eclipse of December 4, 1964
- Followed by: Solar eclipse of October 3, 1986
Solar Saros 123
edit- Preceded by: Solar eclipse of October 23, 1957
- Followed by: Solar eclipse of November 13, 1993
Inex
edit- Preceded by: Solar eclipse of November 23, 1946
- Followed by: Solar eclipse of October 14, 2004
Triad
edit- Preceded by: Solar eclipse of January 1, 1889
- Followed by: Solar eclipse of September 3, 2062
Solar eclipses of 1975–1978
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
Solar eclipse series sets from 1975 to 1978 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | May 11, 1975 Partial |
1.0647 | 123 | November 3, 1975 Partial |
−1.0248 | |
128 | April 29, 1976 Annular |
0.3378 | 133 | October 23, 1976 Total |
−0.327 | |
138 | April 18, 1977 Annular |
−0.399 | 143 | October 12, 1977 Total |
0.3836 | |
148 | April 7, 1978 Partial |
−1.1081 | 153 | October 2, 1978 Partial |
1.1616 |
Saros 123
editThis eclipse is a part of Saros series 123, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 29, 1074. It contains annular eclipses from July 2, 1182 through April 19, 1651; hybrid eclipses from April 30, 1669 through May 22, 1705; and total eclipses from June 3, 1723 through October 23, 1957. The series ends at member 70 as a partial eclipse on May 31, 2318. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 19 at 8 minutes, 7 seconds on November 9, 1398, and the longest duration of totality was produced by member 42 at 3 minutes, 27 seconds on July 27, 1813. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 42–63 occur between 1801 and 2200: | ||
---|---|---|
42 | 43 | 44 |
July 27, 1813 |
August 7, 1831 |
August 18, 1849 |
45 | 46 | 47 |
August 29, 1867 |
September 8, 1885 |
September 21, 1903 |
48 | 49 | 50 |
October 1, 1921 |
October 12, 1939 |
October 23, 1957 |
51 | 52 | 53 |
November 3, 1975 |
November 13, 1993 |
November 25, 2011 |
54 | 55 | 56 |
December 5, 2029 |
December 16, 2047 |
December 27, 2065 |
57 | 58 | 59 |
January 7, 2084 |
January 19, 2102 |
January 30, 2120 |
60 | 61 | 62 |
February 9, 2138 |
February 21, 2156 |
March 3, 2174 |
63 | ||
March 13, 2192 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
20 eclipse events between June 10, 1964 and August 21, 2036 | ||||
---|---|---|---|---|
June 10–11 | March 28–29 | January 14–16 | November 3 | August 21–22 |
117 | 119 | 121 | 123 | 125 |
June 10, 1964 |
March 28, 1968 |
January 16, 1972 |
November 3, 1975 |
August 22, 1979 |
127 | 129 | 131 | 133 | 135 |
June 11, 1983 |
March 29, 1987 |
January 15, 1991 |
November 3, 1994 |
August 22, 1998 |
137 | 139 | 141 | 143 | 145 |
June 10, 2002 |
March 29, 2006 |
January 15, 2010 |
November 3, 2013 |
August 21, 2017 |
147 | 149 | 151 | 153 | 155 |
June 10, 2021 |
March 29, 2025 |
January 14, 2029 |
November 3, 2032 |
August 21, 2036 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
March 14, 1801 (Saros 107) |
February 12, 1812 (Saros 108) |
January 12, 1823 (Saros 109) |
November 10, 1844 (Saros 111) | |
August 9, 1877 (Saros 114) |
July 9, 1888 (Saros 115) |
June 8, 1899 (Saros 116) | ||
May 9, 1910 (Saros 117) |
April 8, 1921 (Saros 118) |
March 7, 1932 (Saros 119) |
February 4, 1943 (Saros 120) |
January 5, 1954 (Saros 121) |
December 4, 1964 (Saros 122) |
November 3, 1975 (Saros 123) |
October 3, 1986 (Saros 124) |
September 2, 1997 (Saros 125) |
August 1, 2008 (Saros 126) |
July 2, 2019 (Saros 127) |
June 1, 2030 (Saros 128) |
April 30, 2041 (Saros 129) |
March 30, 2052 (Saros 130) |
February 28, 2063 (Saros 131) |
January 27, 2074 (Saros 132) |
December 27, 2084 (Saros 133) |
November 27, 2095 (Saros 134) |
October 26, 2106 (Saros 135) |
September 26, 2117 (Saros 136) |
August 25, 2128 (Saros 137) |
July 25, 2139 (Saros 138) |
June 25, 2150 (Saros 139) |
May 25, 2161 (Saros 140) |
April 23, 2172 (Saros 141) |
March 23, 2183 (Saros 142) |
February 21, 2194 (Saros 143) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
March 4, 1802 (Saros 117) |
February 12, 1831 (Saros 118) |
January 23, 1860 (Saros 119) |
January 1, 1889 (Saros 120) |
December 14, 1917 (Saros 121) |
November 23, 1946 (Saros 122) |
November 3, 1975 (Saros 123) |
October 14, 2004 (Saros 124) |
September 23, 2033 (Saros 125) |
September 3, 2062 (Saros 126) |
August 15, 2091 (Saros 127) |
July 25, 2120 (Saros 128) |
July 5, 2149 (Saros 129) |
June 16, 2178 (Saros 130) |
References
edit- ^ "November 3, 1975 Partial Solar Eclipse". timeanddate. Retrieved 8 August 2024.
- ^ "Partial Solar Eclipse of 1975 Nov 03". EclipseWise.com. Retrieved 8 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 123". eclipse.gsfc.nasa.gov.
External links
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC