An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, March 27, 1941,[1] with a magnitude of 0.9355. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.6 days before apogee (on March 30, 1941, at 10:50 UTC), the Moon's apparent diameter was smaller.[2]
Solar eclipse of March 27, 1941 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.5025 |
Magnitude | 0.9355 |
Maximum eclipse | |
Duration | 461 s (7 min 41 s) |
Coordinates | 26°12′S 110°54′W / 26.2°S 110.9°W |
Max. width of band | 276 km (171 mi) |
Times (UTC) | |
Greatest eclipse | 20:08:08 |
References | |
Saros | 138 (27 of 70) |
Catalog # (SE5000) | 9377 |
Annularity was visible from Peru, Bolivia and Brazil. A partial eclipse was visible for parts of Oceania, Central America, the Caribbean, western South America, and Antarctica.
Eclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1941 March 27 at 17:12:43.8 UTC |
First Umbral External Contact | 1941 March 27 at 18:23:09.9 UTC |
First Central Line | 1941 March 27 at 18:26:16.2 UTC |
First Umbral Internal Contact | 1941 March 27 at 18:29:24.0 UTC |
Equatorial Conjunction | 1941 March 27 at 19:49:22.3 UTC |
Greatest Eclipse | 1941 March 27 at 20:08:07.8 UTC |
Greatest Duration | 1941 March 27 at 20:11:10.7 UTC |
Ecliptic Conjunction | 1941 March 27 at 20:14:07.0 UTC |
Last Umbral Internal Contact | 1941 March 27 at 21:47:04.6 UTC |
Last Central Line | 1941 March 27 at 21:50:13.5 UTC |
Last Umbral External Contact | 1941 March 27 at 21:53:20.9 UTC |
Last Penumbral External Contact | 1941 March 27 at 23:03:43.6 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.93546 |
Eclipse Obscuration | 0.87508 |
Gamma | −0.50251 |
Sun Right Ascension | 00h24m50.5s |
Sun Declination | +02°41'09.8" |
Sun Semi-Diameter | 16'01.3" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 00h25m23.4s |
Moon Declination | +02°15'13.1" |
Moon Semi-Diameter | 14'47.6" |
Moon Equatorial Horizontal Parallax | 0°54'17.7" |
ΔT | 24.9 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
March 13 Ascending node (full moon) |
March 27 Descending node (new moon) |
---|---|
Partial lunar eclipse Lunar Saros 112 |
Annular solar eclipse Solar Saros 138 |
Related eclipses
editEclipses in 1941
edit- A partial lunar eclipse on March 13.
- An annular solar eclipse on March 27.
- A partial lunar eclipse on September 5.
- A total solar eclipse on September 21.
Metonic
edit- Preceded by: Solar eclipse of June 8, 1937
- Followed by: Solar eclipse of January 14, 1945
Tzolkinex
edit- Preceded by: Solar eclipse of February 14, 1934
- Followed by: Solar eclipse of May 9, 1948
Half-Saros
edit- Preceded by: Lunar eclipse of March 22, 1932
- Followed by: Lunar eclipse of April 2, 1950
Tritos
edit- Preceded by: Solar eclipse of April 28, 1930
- Followed by: Solar eclipse of February 25, 1952
Solar Saros 138
edit- Preceded by: Solar eclipse of March 17, 1923
- Followed by: Solar eclipse of April 8, 1959
Inex
edit- Preceded by: Solar eclipse of April 17, 1912
- Followed by: Solar eclipse of March 7, 1970
Triad
edit- Preceded by: Solar eclipse of May 26, 1854
- Followed by: Solar eclipse of January 26, 2028
Solar eclipses of 1939–1942
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1939 to 1942 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | April 19, 1939 Annular |
0.9388 | 123 | October 12, 1939 Total |
−0.9737 | |
128 | April 7, 1940 Annular |
0.219 | 133 | October 1, 1940 Total |
−0.2573 | |
138 | March 27, 1941 Annular |
−0.5025 | 143 | September 21, 1941 Total |
0.4649 | |
148 | March 16, 1942 Partial |
−1.1908 | 153 | September 10, 1942 Partial |
1.2571 |
Saros 138
editThis eclipse is a part of Saros series 138, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on June 6, 1472. It contains annular eclipses from August 31, 1598 through February 18, 2482; a hybrid eclipse on March 1, 2500; and total eclipses from March 12, 2518 through April 3, 2554. The series ends at member 70 as a partial eclipse on July 11, 2716. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 23 at 8 minutes, 2 seconds on February 11, 1869, and the longest duration of totality will be produced by member 61 at 56 seconds on April 3, 2554. All eclipses in this series occur at the Moon’s descending node of orbit.[5]
Series members 20–41 occur between 1801 and 2200: | ||
---|---|---|
20 | 21 | 22 |
January 10, 1815 |
January 20, 1833 |
February 1, 1851 |
23 | 24 | 25 |
February 11, 1869 |
February 22, 1887 |
March 6, 1905 |
26 | 27 | 28 |
March 17, 1923 |
March 27, 1941 |
April 8, 1959 |
29 | 30 | 31 |
April 18, 1977 |
April 29, 1995 |
May 10, 2013 |
32 | 33 | 34 |
May 21, 2031 |
May 31, 2049 |
June 11, 2067 |
35 | 36 | 37 |
June 22, 2085 |
July 4, 2103 |
July 14, 2121 |
38 | 39 | 40 |
July 25, 2139 |
August 5, 2157 |
August 16, 2175 |
41 | ||
August 26, 2193 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between March 27, 1884 and August 20, 1971 | ||||
---|---|---|---|---|
March 27–29 | January 14 | November 1–2 | August 20–21 | June 8 |
108 | 110 | 112 | 114 | 116 |
March 27, 1884 |
August 20, 1895 |
June 8, 1899 | ||
118 | 120 | 122 | 124 | 126 |
March 29, 1903 |
January 14, 1907 |
November 2, 1910 |
August 21, 1914 |
June 8, 1918 |
128 | 130 | 132 | 134 | 136 |
March 28, 1922 |
January 14, 1926 |
November 1, 1929 |
August 21, 1933 |
June 8, 1937 |
138 | 140 | 142 | 144 | 146 |
March 27, 1941 |
January 14, 1945 |
November 1, 1948 |
August 20, 1952 |
June 8, 1956 |
148 | 150 | 152 | 154 | |
March 27, 1960 |
January 14, 1964 |
November 2, 1967 |
August 20, 1971 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
April 4, 1810 (Saros 126) |
March 4, 1821 (Saros 127) |
February 1, 1832 (Saros 128) |
December 31, 1842 (Saros 129) |
November 30, 1853 (Saros 130) |
October 30, 1864 (Saros 131) |
September 29, 1875 (Saros 132) |
August 29, 1886 (Saros 133) |
July 29, 1897 (Saros 134) |
June 28, 1908 (Saros 135) |
May 29, 1919 (Saros 136) |
April 28, 1930 (Saros 137) |
March 27, 1941 (Saros 138) |
February 25, 1952 (Saros 139) |
January 25, 1963 (Saros 140) |
December 24, 1973 (Saros 141) |
November 22, 1984 (Saros 142) |
October 24, 1995 (Saros 143) |
September 22, 2006 (Saros 144) |
August 21, 2017 (Saros 145) |
July 22, 2028 (Saros 146) |
June 21, 2039 (Saros 147) |
May 20, 2050 (Saros 148) |
April 20, 2061 (Saros 149) |
March 19, 2072 (Saros 150) |
February 16, 2083 (Saros 151) |
January 16, 2094 (Saros 152) |
December 17, 2104 (Saros 153) |
November 16, 2115 (Saros 154) |
October 16, 2126 (Saros 155) |
September 15, 2137 (Saros 156) |
August 14, 2148 (Saros 157) |
July 15, 2159 (Saros 158) |
June 14, 2170 (Saros 159) |
May 13, 2181 (Saros 160) |
April 12, 2192 (Saros 161) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
June 16, 1825 (Saros 134) |
May 26, 1854 (Saros 135) |
May 6, 1883 (Saros 136) |
April 17, 1912 (Saros 137) |
March 27, 1941 (Saros 138) |
March 7, 1970 (Saros 139) |
February 16, 1999 (Saros 140) |
January 26, 2028 (Saros 141) |
January 5, 2057 (Saros 142) |
December 16, 2085 (Saros 143) |
November 27, 2114 (Saros 144) |
November 7, 2143 (Saros 145) |
October 17, 2172 (Saros 146) |
Notes
edit- ^ "March 27, 1941 Annular Solar Eclipse". timeanddate. Retrieved 4 August 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 4 August 2024.
- ^ "Annular Solar Eclipse of 1941 Mar 27". EclipseWise.com. Retrieved 4 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 138". eclipse.gsfc.nasa.gov.
References
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC