Richard S. Sutton FRS FRSC is a Canadian computer scientist. He is a professor of computing science at the University of Alberta and a research scientist at Keen Technologies.[1] Sutton is considered one of the founders of modern computational reinforcement learning,[2] having several significant contributions to the field, including temporal difference learning and policy gradient methods.[3]

Richard S. Sutton
NationalityCanadian
CitizenshipCanadian
Alma materUniversity of Massachusetts Amherst
Stanford University
Known forTemporal difference learning, Dyna, Options, GQ(λ)
AwardsAAAI Fellow (2001)
President's Award (INNS) (2003)
Royal Society of Canada Fellow (2016)
Scientific career
FieldsArtificial Intelligence
Reinforcement Learning
InstitutionsUniversity of Alberta
ThesisTemporal credit assignment in reinforcement learning (1984)
Doctoral advisorAndrew Barto
Doctoral studentsDavid Silver, Doina Precup
Websiteincompleteideas.net

Life and education

edit

Richard Sutton was born in Ohio, and grew up in Oak Brook, Illinois, a suburb of Chicago.

Sutton received his B.A. in psychology from Stanford University in 1978 before taking an M.S. (1980) and Ph.D. (1984) in computer science from the University of Massachusetts Amherst under the supervision of Andrew Barto. His doctoral dissertation, Temporal Credit Assignment in Reinforcement Learning, introduced actor-critic architectures and temporal credit assignment.[4][3]

He was influenced by Harry Klopf's work in the 1970s, which proposed that supervised learning is insufficient for AI or explaining intelligent behavior, and trial-and-error learning, driven by "hedonic aspects of behavior", is necessary. This focussed his interest to reinforcement learning.[5]

Career

edit

In 1984, Sutton was a postdoctoral researcher at the University of Massachusetts.

From 1985 to 1994, he was a principal member of technical staff in the Computer and Intelligent Systems Laboratory at GTE in Waltham, Massachusetts.[3] After that, he spent 3 years at the University of Massachusetts Amherst as a senior research scientist.[3]

From 1998 to 2002, Sutton worked at the AT&T Shannon Laboratory in Florham Park, New Jersey as principal technical staff member in the artificial intelligence department.[3]

Since 2003, he has been a professor of computing science at the University of Alberta. He led the institution's Reinforcement Learning and Artificial Intelligence Laboratory until 2018.[6][3]

While retaining his professorship, Sutton joined Deepmind in June 2017 as a distinguished research scientist and co-founder of its Edmonton office.[4][7][8]

Sutton became a Canadian citizen in 2015 and renounced his US citizenship[8] in 2017.

In a 2019 essay, Sutton criticized the field of AI research for failing "to learn the bitter lesson that building in how we think we think does not work in the long run", arguing that "70 years of AI research [had shown] that general methods that leverage computation are ultimately the most effective, and by a large margin", beating efforts building on human knowledge about specific fields like computer vision, speech recognition, chess or Go.[9][10]

In 2023 he and John Carmack announced a partnership for the development of AGI.[11]

Selected publications

edit

Awards and honors

edit

Sutton is fellow of the Association for the Advancement of Artificial Intelligence (AAAI) since 2001.[12] In 2003 he received the President's Award from the International Neural Network Society[13] and in 2013, the Outstanding Achievement in Research award from the University of Massachusetts Amherst.[14]

Sutton's nomination as a AAAI fellow reads:[12]

For significant contributions to many topics in machine learning, including reinforcement learning, temporal difference techniques, and neural networks.

In 2016, Sutton was elected Fellow of the Royal Society of Canada.[15] In 2021, he was elected Fellow of the Royal Society.[16]

References

edit
  1. ^ "John Carmack and Rich Sutton partner to accelerate development of Artificial General Intelligence". markets.businessinsider.com. Retrieved 2023-10-02.
  2. ^ "Exclusive: Interview with Rich Sutton, the Father of Reinforcement Learning". 2018-01-11. Archived from the original on 2018-01-11. Retrieved 2018-12-17.
  3. ^ a b c d e f Piatetsky, Gregory (December 5, 2017). "Exclusive: Interview with Rich Sutton, the Father of Reinforcement Learning". KDnuggets. Retrieved 2024-02-10.
  4. ^ a b "Brief Biography for Richard Sutton". incompleteideas.net. Retrieved 2018-12-17.
  5. ^ Sutton, Richard S.; Barto, Andrew (2020). Reinforcement learning: an introduction (Second ed.). Cambridge, Massachusetts: The MIT Press. pp. 22–23. ISBN 978-0-262-03924-6.
  6. ^ Brown, Michael (May 10, 2021). "AI innovator Richard Sutton named to Royal Society". Alberta Machine Intelligence Institute. Retrieved 2024-02-10.
  7. ^ "DeepMind expands to Canada with new research office in Edmonton, Alberta". DeepMind. Retrieved 2018-12-17.
  8. ^ a b "Edmonton AI guru Rich Sutton has lost his DeepMind but not his ambition". National Post. 2023-03-19. Retrieved 2023-07-02.
  9. ^ Sutton, Rich (2019-03-13). "The Bitter Lesson". www.incompleteideas.net. Retrieved 2022-09-22.
  10. ^ Tunstall, Lewis; Werra, Leandro von; Wolf, Thomas (2022-01-26). Natural Language Processing with Transformers. "O'Reilly Media, Inc.". ISBN 978-1-0981-0319-4.
  11. ^ "John Carmack and Rich Sutton partner to accelerate development of Artificial General Intelligence". markets.businessinsider.com. Retrieved 2023-10-02.
  12. ^ a b "Elected AAAI Fellows". www.aaai.org. Retrieved 2018-12-17.
  13. ^ "INNS Award Recipients". www.inns.org. Retrieved 2018-12-17.
  14. ^ "Outstanding Achievement and Advocacy Award Recipients". College of Information and Computer Sciences, University of Massachusetts Amherst. 2010-10-05. Retrieved 2018-12-17.
  15. ^ Brown, Michael (19 September 2016). "U of A Scholars Join Ranks of Royal Society". The Quad. Retrieved 24 August 2023.
  16. ^ "Royal Society elects outstanding new Fellows and Foreign Members". royalsociety.org. Retrieved 2021-06-08.
edit