In general topology, a polytopological space consists of a set together with a family of topologies on that is linearly ordered by the inclusion relation where is an arbitrary index set. It is usually assumed that the topologies are in non-decreasing order.[1][2] However some authors prefer the associated closure operators to be in non-decreasing order where if and only if for all . This requires non-increasing topologies.[3]

Formal definitions

edit

An  -topological space   is a set   together with a monotone map   Top  where   is a partially ordered set and Top  is the set of all possible topologies on   ordered by inclusion. When the partial order   is a linear order then   is called a polytopological space. Taking   to be the ordinal number   an  -topological space   can be thought of as a set   with topologies   on it. More generally a multitopological space   is a set   together with an arbitrary family   of topologies on it.[2]

History

edit

Polytopological spaces were introduced in 2008 by the philosopher Thomas Icard for the purpose of defining a topological model of Japaridze's polymodal logic (GLP).[1] They were later used to generalize variants of Kuratowski's closure-complement problem.[2][3] For example Taras Banakh et al. proved that under operator composition the   closure operators and complement operator on an arbitrary  -topological space can together generate at most   distinct operators[2] where  In 1965 the Finnish logician Jaakko Hintikka found this bound for the case   and claimed[4] it "does not appear to obey any very simple law as a function of  ".

See also

edit

References

edit
  1. ^ a b Icard, III, Thomas F. (2008). Models of the Polymodal Provability Logic (PDF) (Master's thesis). University of Amsterdam.
  2. ^ a b c d Banakh, Taras; Chervak, Ostap; Martynyuk, Tetyana; Pylypovych, Maksym; Ravsky, Alex; Simkiv, Markiyan (2018). "Kuratowski Monoids of  -Topological Spaces". Topological Algebra and Its Applications. 6 (1): 1–25. arXiv:1508.07703. doi:10.1515/taa-2018-0001.
  3. ^ a b Canilang, Sara; Cohen, Michael P.; Graese, Nicolas; Seong, Ian (2021). "The closure-complement-frontier problem in saturated polytopological spaces". New Zealand Journal of Mathematics. 51: 3–27. arXiv:1907.08203. doi:10.53733/151. MR 4374156.
  4. ^ Hintikka, Jaakko (1965). "A closure and complement result for nested topologies". Fundamenta Mathematicae. 57: 97–106. MR 0195034.